Identifying Overly Restrictive Matching Patterns in SMT-based Program Verifiers (extended version)
暂无分享,去创建一个
Peter Müller | Alexandra Bugariu | Arshavir Ter-Gabrielyan | Peter Müller | Arshavir Ter-Gabrielyan | Alexandra Bugariu
[1] Tiziana Margaria,et al. Tools and algorithms for the construction and analysis of systems: a special issue for TACAS 2017 , 2001, International Journal on Software Tools for Technology Transfer.
[2] Annabelle McIver,et al. Logic for Programming, Artificial Intelligence, and Reasoning , 2015, Lecture Notes in Computer Science.
[3] K. Rustan M. Leino,et al. Reasoning about comprehensions with first-order SMT solvers , 2009, SAC '09.
[4] K. Rustan M. Leino,et al. Practical Reasoning About Invocations and Implementations of Pure Methods , 2007, FASE.
[5] Pascal Fontaine,et al. Revisiting Enumerative Instantiation , 2018, TACAS.
[6] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[7] Viktor Kuncak,et al. Counterexample-Guided Quantifier Instantiation for Synthesis in SMT , 2015, CAV.
[8] Wolfram Schulte,et al. VCC: Contract-based modular verification of concurrent C , 2009, 2009 31st International Conference on Software Engineering - Companion Volume.
[9] Christopher L. Conway,et al. Cvc4 , 2011, CAV.
[10] Bor-Yuh Evan Chang,et al. Boogie: A Modular Reusable Verifier for Object-Oriented Programs , 2005, FMCO.
[11] K. Rustan M. Leino,et al. Verification of Equivalent-Results Methods , 2008, ESOP.
[12] Peter Müller,et al. Checking Well-Formedness of Pure-Method Specifications , 2008, FM.
[13] Geoff Sutcliffe. The CADE ATP System Competition - CASC , 2016, AI Mag..
[14] Nikolaj Bjørner,et al. AVATAR Modulo Theories , 2016, GCAI.
[15] K. Rustan M. Leino,et al. A Polymorphic Intermediate Verification Language: Design and Logical Encoding , 2010, TACAS.
[16] Leonardo Mendonça de Moura,et al. Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories , 2009, CAV.
[17] Michał Moskal,et al. Programming with triggers , 2009, SMT '09.
[18] K. Rustan M. Leino,et al. Dafny: An Automatic Program Verifier for Functional Correctness , 2010, LPAR.
[19] David Detlefs,et al. Simplify: a theorem prover for program checking , 2005, JACM.
[20] M. Gario,et al. PySMT: a Solver-Agnostic Library for Fast Prototyping of SMT-Based Algorithms , 2015 .
[21] Cesare Tinelli,et al. Towards Bit-Width-Independent Proofs in SMT Solvers , 2019, CADE.
[22] Andrei Voronkov,et al. First-Order Theorem Proving and Vampire , 2013, CAV.
[23] Marieke Huisman,et al. VerCors: A Layered Approach to Practical Verification of Concurrent Software , 2016, 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP).
[24] Franz Baader,et al. Unification theory , 1986, Decis. Support Syst..
[25] Peter Müller,et al. Nagini: A Static Verifier for Python , 2018, CAV.
[26] Shuvendu K. Lahiri,et al. A Reachability Predicate for Analyzing Low-Level Software , 2007, TACAS.
[27] Philipp Rümmer,et al. E-Matching with Free Variables , 2012, LPAR.
[28] Juan Chen,et al. Verifying higher-order programs with the dijkstra monad , 2013, PLDI.
[29] Peter Müller,et al. Leveraging rust types for modular specification and verification , 2019, Proc. ACM Program. Lang..
[30] Benjamin Livshits,et al. Verifying higher-order programs with the dijkstra monad , 2013, PLDI.
[31] Peter Müller,et al. Gobra: Modular Specification and Verification of Go Programs (extended version) , 2021, CAV.
[32] Andrei Voronkov,et al. AVATAR: The Architecture for First-Order Theorem Provers , 2014, CAV.
[33] Clark W. Barrett,et al. The SMT-LIB Standard Version 2.0 , 2010 .
[34] Peter Müller,et al. Viper: A Verification Infrastructure for Permission-Based Reasoning , 2016, VMCAI.
[35] Peter Müller,et al. Verification Condition Generation for Permission Logics with Abstract Predicates and Abstraction Functions , 2013, ECOOP.
[36] Pierre-Yves Strub,et al. Dependent types and multi-monadic effects in F* , 2016, POPL.
[37] Nachum Dershowitz,et al. In handbook of automated reasoning , 2001 .