The turnpike property in finite-dimensional nonlinear optimal control

Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory.

[1]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[2]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[3]  G. Stefani Regularity properties of the minimum-time map , 1991 .

[4]  Emmanuel Trélat,et al.  Global steady-state controllability of 1-D semilinear heat equations , 2004 .

[5]  H. Halkin Necessary conditions for optimal control problems with infinite horizons , 1974 .

[6]  Emmanuel Trélat,et al.  GLOBAL STEADY-STATE STABILIZATION AND CONTROLLABILITY OF 1D SEMILINEAR WAVE EQUATIONS , 2006 .

[7]  Frank H. Clarke,et al.  The relationship between the maximum principle and dynamic programming , 1987 .

[8]  David Cass,et al.  Optimum Growth in an Aggregative Model of Capital Accumulation , 1965 .

[9]  Alain Rapaport,et al.  Competition between Most Rapid Approach Paths: Necessary and Sufficient Conditions , 2005 .

[10]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[11]  David Cass,et al.  Optimum economic growth in an aggregative model of capital accumulation : a turnpike theorem , 1966 .

[12]  Emmanuel Trélat,et al.  Morse-Sard type results in sub-Riemannian geometry , 2005 .

[13]  Francesca C. Chittaro,et al.  Adiabatic Control of the Schrödinger Equation via Conical Intersections of the Eigenvalues , 2011, IEEE Transactions on Automatic Control.

[14]  E. Trélat,et al.  Stability properties of steady-states for a network of ferromagnetic nanowires , 2012 .

[15]  Emmanuel Trélat,et al.  Mécanique céleste et contrôle de systèmes spatiaux , 2006 .

[16]  Emmanuel Trélat,et al.  Controllability of couette flows , 2005 .

[17]  Brian D. O. Anderson,et al.  Optimal control problems over large time intervals , 1987, Autom..

[18]  Enrique Zuazua,et al.  Remarks on Long Time Versus Steady State Optimal Control , 2016 .

[19]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[20]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[21]  M. J. Balas,et al.  Optimal quasi-static shape control for large aerospace antennae , 1985 .

[22]  R. Bellman,et al.  Linear Programming and Economic Analysis. , 1960 .

[23]  Emmanuel Trélat,et al.  Optimal Control and Applications to Aerospace: Some Results and Challenges , 2012, Journal of Optimization Theory and Applications.

[24]  D. Zwillinger Matrix Riccati Equations , 1992 .

[25]  L. Grüne,et al.  Infinite Horizon Optimal Control , 2011 .

[26]  P. Kokotovic,et al.  A dichotomy in linear control theory , 1972 .

[27]  P. Cartigny,et al.  Turnpike theorems by a value function approach , 2003, 2003 European Control Conference (ECC).

[28]  Jürgen Pannek,et al.  Analysis of unconstrained nonlinear MPC schemes with time varying control horizon , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[29]  L. McKenzie,et al.  Turnpike Theory , 1976 .

[30]  B. Piccoli,et al.  Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .

[31]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[32]  Emmanuel Trélat,et al.  Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations , 2004, SIAM J. Control. Optim..

[33]  Enrique Zuazua,et al.  Long Time versus Steady State Optimal Control , 2013, SIAM J. Control. Optim..

[34]  Grégoire Allaire,et al.  Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation , 2010, SIAM J. Control. Optim..

[35]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[36]  Emmanuel Trélat,et al.  Singular Trajectories of Control-Affine Systems , 2006, SIAM J. Control. Optim..

[37]  Jean-Baptiste Caillau,et al.  Second order optimality conditions in the smooth case and applications in optimal control , 2007 .

[38]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[39]  Emmanuel Tr'elat,et al.  On the stabilization problem for nonholonomic distributions , 2006, math/0610363.

[40]  P. Samuelson The general saddlepoint property of optimal-control motions , 1972 .

[41]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[42]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[43]  Yacine Chitour,et al.  Optimal Control Models of Goal-oriented Human Locomotion , 2010, SIAM J. Control. Optim..

[44]  김정기,et al.  Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.

[45]  Emmanuel Trélat,et al.  Contrôle optimal : théorie & applications , 2005 .

[46]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[47]  Piernicola Bettiol,et al.  Normality of the maximum principle for nonconvex constrained Bolza problems , 2007 .

[48]  A. Haurie Optimal control on an infinite time horizon: The turnpike approach , 1976 .

[49]  A. Haurie,et al.  Infinite horizon optimal control : deterministic and stochastic systems , 1991 .

[50]  H. B. Keller,et al.  Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .

[51]  Karl Worthmann,et al.  An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems , 2014, SIAM J. Control. Optim..

[52]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[53]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  Antony Jameson,et al.  Computational Aerodynamics: Solvers and Shape Optimization , 2013 .

[55]  Jean-Michel Coron,et al.  Optimization of an amplification protocol for misfolded proteins by using relaxed control , 2013, Journal of Mathematical Biology.

[56]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[57]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[58]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[59]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[60]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[61]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[62]  L. McKenzie,et al.  TURNPIKE THEOREMS FOR A GENERALIZED LEONTIEF MODELl , 1963 .

[63]  Lars Grüne,et al.  Economic receding horizon control without terminal constraints , 2013, Autom..

[64]  A. Zaslavski Turnpike properties in the calculus of variations and optimal control , 2005 .

[65]  R. T. Roc Saddle Points of Hamiltonian Systems in Convex Problems of Lagrange ' , .