Analyzing large-scale Data Cubes with user-defined algorithms: A cloud-native approach

[1]  L. Lymburner,et al.  Mapping Australia's dynamic coastline at mean sea level using three decades of Landsat imagery , 2021, Remote Sensing of Environment.

[2]  K.R. Thorp,et al.  Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia , 2021, Remote Sensing of Environment.

[3]  Le Wang,et al.  How to automate timely large-scale mangrove mapping with remote sensing , 2021 .

[4]  Hong Zhang,et al.  Built-up area mapping in China from GF-3 SAR imagery based on the framework of deep learning , 2021 .

[5]  Junjie Zhu,et al.  A Modular Remote Sensing Big Data Framework , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[6]  J. Zhang,et al.  An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine , 2021, ISPRS Journal of Photogrammetry and Remote Sensing.

[7]  Steven P. Brumby,et al.  Global land use / land cover with Sentinel 2 and deep learning , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[8]  Xiao‐Hai Yan,et al.  Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks , 2021, Remote Sensing of Environment.

[9]  Tyler J. Lark,et al.  Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States , 2021, Remote Sensing of Environment.

[10]  Michele Meroni,et al.  From parcel to continental scale - A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations , 2021, Remote Sensing of Environment.

[11]  Joseph Hamman,et al.  Cloud-Native Repositories for Big Scientific Data , 2020, Computing in Science & Engineering.

[12]  Joel McCorkel,et al.  Landsat 9: Empowering open science and applications through continuity , 2020 .

[13]  M. Datcu,et al.  Data Mining on the Candela Cloud Platform , 2020, IEEE International Geoscience and Remote Sensing Symposium.

[14]  Pierre Soille,et al.  Mosaicking Copernicus Sentinel-1 Data at Global Scale , 2020, IEEE Transactions on Big Data.

[15]  Masoud Mahdianpari,et al.  Google Earth Engine for geo-big data applications: A meta-analysis and systematic review , 2020 .

[16]  Gregory Giuliani,et al.  Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Karine Reis Ferreira,et al.  An Overview of Platforms for Big Earth Observation Data Management and Analysis , 2020, Remote. Sens..

[18]  Maximilian Lange,et al.  Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery , 2020 .

[19]  Luo Liu,et al.  Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine , 2020 .

[20]  Martin Brandt,et al.  The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2 , 2020, Remote Sensing of Environment.

[21]  Xiaoping Du,et al.  ScienceEarth: A Big Data Platform for Remote Sensing Data Processing , 2020, Remote. Sens..

[22]  Gui-Song Xia,et al.  An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Dehai Zhu,et al.  Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges , 2019, Remote. Sens..

[24]  Jon Atli Benediktsson,et al.  Remotely sensed big data: evolution in model development for information extraction [point of view] , 2019, Proc. IEEE.

[25]  Hong Xu,et al.  Achieving the Full Vision of Earth Observation Data Cubes , 2019, Data.

[26]  J. Chan,et al.  Climate change and tropical cyclone trend , 2019, Nature.

[27]  Lei Ma,et al.  Deep learning in remote sensing applications: A meta-analysis and review , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[28]  Jon Atli Benediktsson,et al.  Deep Learning for Hyperspectral Image Classification: An Overview , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Kwo-Sen Kuo,et al.  A Big Earth Data Platform Exploiting Transparent Multimodal Parallelization , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Pierre Soille,et al.  A versatile data-intensive computing platform for information retrieval from big geospatial data , 2018, Future Gener. Comput. Syst..

[31]  L. Lymburner,et al.  Digital earth Australia – unlocking new value from earth observation data , 2017 .

[32]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[33]  Denisa Rodila,et al.  Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD) , 2017 .

[34]  Ben Evans,et al.  The Australian Geoscience Data Cube - foundations and lessons learned , 2017 .

[35]  Daniel Nüst,et al.  Reproducibility and Practical Adoption of GEOBIA with Open-Source Software in Docker Containers , 2017, Remote. Sens..

[36]  Feng Li,et al.  A Framework of Mixed Sparse Representations for Remote Sensing Images , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Sanming Zhou,et al.  Networking for Big Data: A Survey , 2017, IEEE Communications Surveys & Tutorials.

[38]  Alvin Cheung,et al.  Comparative Evaluation of Big-Data Systems on Scientific Image Analytics Workloads , 2016, Proc. VLDB Endow..

[39]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[40]  Jon Atli Benediktsson,et al.  Big Data for Remote Sensing: Challenges and Opportunities , 2016, Proceedings of the IEEE.

[41]  Charles K. Toth,et al.  Remote sensing platforms and sensors: A survey , 2016 .

[42]  L. Lymburner,et al.  Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia , 2016 .

[43]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[44]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[45]  David Bernstein,et al.  Containers and Cloud: From LXC to Docker to Kubernetes , 2014, IEEE Cloud Computing.

[46]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[47]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[48]  Juhnyoung Lee,et al.  A view of cloud computing , 2010, CACM.

[49]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[50]  Xiaoping Du,et al.  Super-resolution of subsurface temperature field from remote sensing observations based on machine learning , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Markus Neteler,et al.  The openEO API-Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities , 2021, Remote. Sens..

[52]  Matthew Rocklin,et al.  Dask: Parallel Computation with Blocked algorithms and Task Scheduling , 2015, SciPy.