Can we discover double Higgs production at the LHC

We explore double Higgs production via gluon fusion in the $b\bar{b} \gamma \gamma $ channel at the high-luminosity LHC using machine learning tools. We first propose a Bayesian optimization approach to select cuts on kinematic variables, obtaining a $30-50$ \% increase in the significance compared to current results in the literature. We show that this improvement persists once systematic uncertainties are taken into account. We next use boosted decision trees (BDT) to further discriminate signal and background events. Our analysis shows that a joint optimization of kinematic cuts and BDT hyperparameters results in an appreciable improvement in the significance. Finally, we perform a multivariate analysis of the output scores of the BDT. We find that assuming a very low level of systematics, the techniques proposed here will be able to confirm the production of a pair of Standard Model Higgs bosons at 5$\sigma$ level with 3 ab$^{-1}$ of data. Assuming a more realistic projection of the level of systematics, around 10\%, the optimization of cuts to train BDTs combined with a multivariate analysis delivers a respectable significance of 4.6$\sigma$. Even assuming large systematics of 20\%, our analysis predicts a 3.6$\sigma$ significance, which represents at least strong evidence in favor of double Higgs production. We carefully incorporate background contributions coming from light flavor jets or $c$-jets being misidentified as $b$-jets and jets being misidentified as photons in our analysis.

[1]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[2]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[3]  M. Spannowsky,et al.  Standard model Higgs boson pair production in the (bb¯$$ b\overline{b} $$)(bb¯$$ b\overline{b} $$) final state , 2014, 1404.7139.

[4]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[5]  M. Kerner,et al.  NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers , 2017, 1703.09252.

[6]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[7]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[8]  Q. Cao,et al.  Resolving the degeneracy in single Higgs production with Higgs pair production , 2015, 1508.06512.

[9]  J. T. Childers,et al.  Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector , 2015 .

[10]  Ben Cooper,et al.  Non-resonant Higgs-pair production in the $$b\overline{b}$$bb¯$$b\overline{b}$$bb¯ final state at the LHC , 2014, 1410.2794.

[11]  et al,et al.  Observation of single top quark production and measurement of vertical bar V-tb vertical bar with CDF , 2010, 1004.1181.

[12]  Felix Kling,et al.  Maximizing the significance in Higgs boson pair analyses , 2017 .

[13]  S. Borowka,et al.  Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .

[14]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[15]  T. Kamon,et al.  Probing compressed top squark scenarios at the LHC at 14 TeV , 2013, 1312.1348.

[16]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[17]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[18]  Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process , 2007, physics/0702156.

[19]  C. Jackson,et al.  Higgs-pair production and measurement of the triscalar coupling at LHC(8,14) , 2013, 1311.2931.

[20]  S. Willenbrock,et al.  Higgs boson pair production from gluon fusion , 1988 .

[21]  Q. Cao,et al.  Double Higgs production at the 14 TeV LHC and a 100 TeV $pp$ collider , 2016, 1611.09336.

[22]  Distinguishing Spins in Decay Chains at the Large Hadron Collider , 2006, hep-ph/0605286.

[23]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[24]  P Baldi,et al.  Enhanced Higgs boson to τ(+)τ(-) search with deep learning. , 2014, Physical review letters.

[25]  Higgs Working Group Report of the Snowmass 2013 Community Planning Study , 2013, 1310.8361.

[26]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[27]  Jian Wang,et al.  Threshold resummation effects in Higgs boson pair production at the LHC , 2013, 1301.1245.

[28]  David D. Cox,et al.  Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms , 2013, SciPy.

[29]  D. Florian,et al.  Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC , 2015, Journal of High Energy Physics.

[30]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[31]  Balázs Kégl,et al.  The Higgs boson machine learning challenge , 2014, HEPML@NIPS.

[32]  A. Alves,et al.  Searches for dark matter at the LHC: A multivariate analysis in the mono-Z channel , 2015, 1507.08294.

[33]  T. Plehn,et al.  It is a gluino , 2006, hep-ph/0605067.

[34]  J. Huston,et al.  Implications of CTEQ global analysis for collider observables , 2008, 0802.0007.

[35]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[36]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2016, 1606.09519.

[37]  U. Baur,et al.  Probing the Higgs self-coupling at hadron colliders using rare decays , 2003, hep-ph/0310056.

[38]  A. Alves,et al.  Unravelling the sbottom spin at the CERN LHC , 2007, 0704.0254.

[39]  Gilles Louppe,et al.  Experiments using machine learning to approximate likelihood ratios for mixture models , 2016 .

[40]  K. Melnikov,et al.  Virtual corrections to Higgs boson pair production in the large top quark mass limit , 2014, 1408.2422.

[41]  Measuring slepton spin at the LHC , 2005, hep-ph/0511115.

[42]  G. Cowan Statistics for Searches at the LHC , 2013, 1307.2487.

[43]  Li Lin Yang,et al.  Higgs boson pair production at the LHC in the $b \bar{b} W^+ W^-$ channel , 2012, 1209.1489.

[44]  J. Frost,et al.  Boosting Higgs pair production in the $$b\bar{b}b\bar{b}$$bb¯bb¯ final state with multivariate techniques , 2015, The European physical journal. C, Particles and fields.

[45]  C. Wagner,et al.  Probing the electroweak phase transition at the LHC , 2015, 1512.00068.

[46]  T. Kamon,et al.  Probing dark matter at the LHC using vector boson fusion processes. , 2013, Physical review letters.

[47]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[48]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[49]  Michael Spira,et al.  Neutral Higgs-Boson Pair Production at Hadron Colliders: QCD Corrections , 1998 .

[50]  B. Webber,et al.  Distinguishing Spins in Supersymmetric and Universal Extra Dimension Models at the Large Hadron Collider , 2005, hep-ph/0507170.

[51]  D. Florian,et al.  Two-loop virtual corrections to Higgs pair production , 2013, 1305.5206.

[52]  J. Bij,et al.  HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION , 1988 .

[53]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2013, Physical review letters.

[54]  G. Aad Search for Higgs Boson Pair Production in the γγb ¯ b Final State Using pp Collision Data at ffiffi , 2015 .

[55]  R. Contino,et al.  Effective field theory analysis of double Higgs production via gluon fusion , 2015, 1502.00539.

[56]  Bernd A. Kniehl,et al.  Low-energy theorems in Higgs physics , 1995 .

[57]  U. Baur,et al.  Examining the Higgs boson potential at lepton and hadron colliders: A comparative analysis , 2003, hep-ph/0304015.

[58]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.