FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

Abstract. We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS. We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.

[1]  Christian Kühnlein,et al.  Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics , 2019, J. Comput. Phys..

[2]  Joanna Szmelter,et al.  FVM 1.0: A nonhydrostatic finite-volume dynamical core formulation for IFS , 2018 .

[3]  Martin Köhler,et al.  The Numerics of Physical Parametrization in the ECMWF Model , 2018, Front. Earth Sci..

[4]  R. Heikes,et al.  DCMIP2016: the splitting supercell test case , 2018, Geoscientific Model Development.

[5]  Christian Kühnlein,et al.  MPDATA: Third-order accuracy for variable flows , 2018, J. Comput. Phys..

[6]  R. Heikes,et al.  DCMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models , 2017 .

[7]  Peter Bauer,et al.  Atlas : A library for numerical weather prediction and climate modelling , 2017, Comput. Phys. Commun..

[8]  Christian Kühnlein,et al.  A finite-volume module for cloud-resolving simulations of global atmospheric flows , 2017, J. Comput. Phys..

[9]  Christian Kühnlein,et al.  An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics , 2017, J. Comput. Phys..

[10]  N. Wedi,et al.  Extreme scaling for global weather forecasts at O(1km) horizontal resolution , 2017 .

[11]  Michail Diamantakis,et al.  Sensitivity of the ECMWF Model to Semi-Lagrangian Departure Point Iterations , 2016 .

[12]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[13]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[14]  Sylvie Malardel,et al.  An alternative cell‐averaged departure point reconstruction for pointwise semi‐Lagrangian transport schemes , 2015 .

[15]  Rupert Klein,et al.  A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics , 2014 .

[16]  Paul Charbonneau,et al.  The Monge-Ampère trajectory correction for semi-Lagrangian schemes , 2014, J. Comput. Phys..

[17]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Deep Convection , 2014 .

[18]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[19]  Christiane Jablonowski,et al.  A proposed baroclinic wave test case for deep‐ and shallow‐atmosphere dynamical cores , 2014 .

[20]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Michail Diamantakis,et al.  Global mass fixer algorithms for conservative tracer transport in the ECMWF model , 2014 .

[22]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[23]  Christiane Jablonowski,et al.  Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model , 2014 .

[24]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[25]  Mats Hamrud,et al.  A Fast Spherical Harmonics Transform for Global NWP and Climate Models , 2013 .

[26]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[27]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[28]  Joseph B. Klemp,et al.  A Terrain-Following Coordinate with Smoothed Coordinate Surfaces , 2011 .

[29]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[30]  Piotr K. Smolarkiewicz,et al.  On numerical realizability of thermal convection , 2009, J. Comput. Phys..

[31]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[32]  Jimy Dudhia,et al.  An Upper Gravity-Wave Absorbing Layer for NWP Applications , 2008 .

[33]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[34]  John Thuburn,et al.  Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..

[35]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[36]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[37]  J. Szmelter,et al.  MPDATA: An edge-based unstructured-grid formulation , 2005 .

[38]  Piotr K. Smolarkiewicz,et al.  On physical realizability and uncertainty of numerical solutions , 2005 .

[39]  Mariano Hortal,et al.  A finite‐element scheme for the vertical discretization of the semi‐Lagrangian version of the ECMWF forecast model , 2004 .

[40]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[41]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[42]  L. Margolin,et al.  On balanced approximations for time integration of multiple time scale systems , 2003 .

[43]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[44]  Mariano Hortal,et al.  The development and testing of a new two‐time‐level semi‐Lagrangian scheme (SETTLS) in the ECMWF forecast model , 2002 .

[45]  Thomas J. Dunn,et al.  A Dynamically Adapting Weather and Dispersion Model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) , 2000 .

[46]  P. K. Smolarkiewicz,et al.  VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN FLUID MODELS , 2000 .

[47]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[48]  Pierre Bénard,et al.  Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system , 1995 .

[49]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[50]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[51]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[52]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[53]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[54]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[55]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[56]  S. Orszag Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation , 1970 .

[57]  M. Diamantakis 819 A positive definite tracer mass fixer for high resolution weather and atmospheric composition forecasts , 2017 .

[58]  Mats Hamrud,et al.  A new grid for the IFS , 2016 .

[59]  P. Lauritzen,et al.  Dynamical Core Model Intercomparison Project ( DCMIP 2016 ) Test Case Document , 2016 .

[60]  C. Kühnlein,et al.  The modelling infrastructure of the Integrated Forecasting System : Recent advances and future challenges , 2015 .

[61]  Adrian M. Tompkins,et al.  649 A new prognostic bulk microphysics scheme for the IFS , 2012 .

[62]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[63]  Matthew D. Piggott,et al.  Challenges Facing Adaptive Mesh Modeling of the Atmosphere and Ocean , 2010 .

[64]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[65]  Piotr K. Smolarkiewicz,et al.  Spectral Preconditioners for nonhydrostatic atmospheric models: extreme applications [presentation] , 2004 .

[66]  A. Simmons,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[67]  Clive Temperton,et al.  Treatment of the Coriolis Terms in Semi-Lagrangian Spectral Models , 1997 .