On the compressive behavior of an FDM Steward Platform part

[1]  A. A. Zadpoor,et al.  Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells , 2017 .

[2]  Markos Petousis,et al.  Experimental Determination of the Tensile Strength of Fused Deposition Modeling Parts , 2014 .

[3]  Ismail Durgun,et al.  Experimental investigation of FDM process for improvement of mechanical properties and production cost , 2014 .

[4]  Siba Sankar Mahapatra,et al.  Improvement in Tensile Strength of FDM Built Parts by Parametric Control , 2014 .

[5]  Vamsi K. Yadavalli,et al.  Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices , 2013 .

[6]  Ming Tian,et al.  Mechanical and tribological properties of acrylonitrile–butadiene rubber filled with graphite and carbon black , 2012 .

[7]  Constance W. Ziemian,et al.  Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling , 2012 .

[8]  Syed H. Masood,et al.  Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling , 2011 .

[9]  R. Gupta,et al.  Wood–plastic composites formulated with virgin and recycled ABS , 2009 .

[10]  P. Tarantili,et al.  Preparation of poly(acrylonitrile–butadiene–styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing , 2009 .

[11]  Yongjin Li,et al.  Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphology and properties , 2009 .

[12]  A. Rahmatpour,et al.  Study on Preparation and Properties of Acrylonitrile‐Butadiene‐Styrene/Montmorillonite Nanocomposites , 2007 .

[13]  S. Bateman,et al.  Ground rubber/acrylonitrile–butadiene–styrene composites , 2007 .

[14]  Caroline Sunyong Lee,et al.  Measurement of anisotropic compressive strength of rapid prototyping parts , 2007 .

[15]  P. Wright,et al.  Anisotropic material properties of fused deposition modeling ABS , 2002 .

[16]  R. Stepien,et al.  Acrylonitrile–Butadiene–Styrene Polymers , 2001 .

[17]  John E. Renaud,et al.  Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation , 2001 .

[18]  T. Kotaka,et al.  Viscoplastic modeling of ABS material under high-strain-rate uniaxial elongational deformation , 1999 .

[19]  S. Bahadur Strain hardening equation and the prediction of tensile strength of rolled polymers , 1973 .

[20]  Ognjan B. Lu,et al.  EFFECT OF LAYER THICKNESS, DEPOSITION ANGLE, AND INFILL ON MAXIMUM FLEXURAL FORCE IN FDM-BUILT SPECIMENS , 2014 .

[21]  Ruth Jill Urbanic,et al.  An Optimization Approach for Components Built by Fused Deposition Modeling with Parametric Internal Structures , 2014 .

[22]  Anoop Kumar Sood,et al.  Experimental investigation and empirical modelling of FDM process for compressive strength improvement , 2012 .

[23]  Syed H. Masood,et al.  Dynamic mechanical properties of ABS material processed by fused deposition modelling , 2012 .

[24]  A. K. Sood,et al.  Parametric appraisal of mechanical property of fused deposition modelling processed parts , 2010 .

[25]  Luigi Maria Galantucci,et al.  Experimental study aiming to enhance the surface finish of fused deposition modeled parts , 2009 .

[26]  Luigi Maria Galantucci,et al.  Study of compression properties of topologically optimized FDM made structured parts , 2008 .

[27]  Syed H. Masood,et al.  Thermo-mechanical Properties of a Metal-filled Polymer Composite for Fused Deposition Modelling Applications , 2007 .

[28]  Qiao Sun,et al.  Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties , 2002 .