Bounds for Binary Linear Locally Repairable Codes via a Sphere-Packing Approach

For locally repairable codes (LRCs), Cadambe and Mazumdar derived the first field-dependent parameter bound, known as the C-M bound. However, the C-M bound depends on an undetermined parameter <inline-formula> <tex-math notation="LaTeX">$ {k}^{( {q})}_{{\textbf {opt}}}( {n}, {d})$ </tex-math></inline-formula>. In this paper, a sphere-packing approach is developed for upper bounding the parameter <inline-formula> <tex-math notation="LaTeX">$ {k}$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$[ {n}, {k}, {d}]$ </tex-math></inline-formula> linear LRCs with locality <inline-formula> <tex-math notation="LaTeX">$ {r}$ </tex-math></inline-formula>. When restricted to the binary field, three upper bounds (i.e., <monospace>Bound A</monospace>, <monospace>Bound B</monospace>, and <monospace>Bound C</monospace>) are derived in an explicit form. More specifically, <monospace>Bound A</monospace> holds under the hypothesis that the local repair groups are disjoint and of equal size. Comparing with previous bounds obtained under the same hypothesis, <monospace>Bound A</monospace> either covers them as special cases or has an advantage due to its explicit form. Then, the hypothesis is removed in <monospace>Bound B</monospace> and <monospace>Bound C</monospace>. As the price for explicit form, <monospace>Bound B</monospace> specially holds for <inline-formula> <tex-math notation="LaTeX">$ {d}\geq \text {5}$ </tex-math></inline-formula> and <monospace>Bound C</monospace> for <inline-formula> <tex-math notation="LaTeX">$ {r}=\textbf {2}$ </tex-math></inline-formula>. Through specific comparisons, we show that <monospace>Bound B</monospace> and <monospace>Bound C</monospace> both tend to outperform the C-M bound, as <inline-formula> <tex-math notation="LaTeX">$ {n}$ </tex-math></inline-formula> goes large. Moreover, a family of binary linear LRCs with <inline-formula> <tex-math notation="LaTeX">$ {d}\geq \textbf {6}$ </tex-math></inline-formula> attaining <monospace>Bound B</monospace> are constructed and later extended to a wider range of parameters by a shortening technique. Lastly, most of the bounds and constructions are extended to <inline-formula> <tex-math notation="LaTeX">$ {q}$ </tex-math></inline-formula>-ary LRCs.

[1]  Masoud Ardakani,et al.  A Class of Binary Locally Repairable Codes , 2016, IEEE Transactions on Communications.

[2]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[3]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[4]  Chau Yuen,et al.  Optimal Locally Repairable Linear Codes , 2014, IEEE Journal on Selected Areas in Communications.

[5]  Natalia Silberstein,et al.  Optimal binary locally repairable codes via anticodes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[6]  A. Robert Calderbank,et al.  Cyclic LRC codes and their subfield subcodes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Paul H. Siegel,et al.  Cyclic linear binary locally repairable codes , 2015, 2015 IEEE Information Theory Workshop (ITW).

[8]  Chin-Long Chen Construction of some binary linear codes of minimum distance five , 1991, IEEE Trans. Inf. Theory.

[9]  A. Robert Calderbank,et al.  Binary cyclic codes that are locally repairable , 2014, 2014 IEEE International Symposium on Information Theory.

[10]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[11]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2014, IEEE Trans. Inf. Theory.

[12]  Zhifang Zhang,et al.  An Integer Programming-Based Bound for Locally Repairable Codes , 2014, IEEE Transactions on Information Theory.

[13]  Dimitris S. Papailiopoulos,et al.  Optimal locally repairable codes and connections to matroid theory , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  P. Vijay Kumar,et al.  Codes with locality for two erasures , 2014, 2014 IEEE International Symposium on Information Theory.

[15]  Paul H. Siegel,et al.  Binary Linear Locally Repairable Codes , 2015, IEEE Transactions on Information Theory.

[16]  Bin Chen,et al.  On optimal ternary locally repairable codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[17]  Itzhak Tamo,et al.  Combinatorial and LP bounds for LRC codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[18]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[19]  Abhishek Agarwal,et al.  Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes , 2017, IEEE Transactions on Information Theory.

[20]  Arya Mazumdar,et al.  Bounds on the Size of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[21]  Kannan Ramchandran,et al.  A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook Warehouse Cluster , 2013, HotStorage.

[22]  Bin Chen,et al.  Some results on optimal locally repairable codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).