A New Solution Concept and Family of Relaxations for Hybrid Dynamical Systems

We introduce a holistic framework for the analysis, approximation and control of the trajectories of hybrid dynamical systems which display event-triggered discrete jumps in the continuous state. We begin by demonstrating how to explicitly represent the dynamics of this class of systems using a single piecewise-smooth vector field defined on a manifold, and then employ Filippov's solution concept to describe the trajectories of the system. The resulting hybrid Filippov solutions greatly simplify the mathematical description of hybrid executions, providing a unifying solution concept with which to work. Extending previous efforts to regularize piecewise-smooth vector fields, we then introduce a parameterized family of smooth control systems whose trajectories are used to approximate the hybrid Filippov solution numerically. The two solution concepts are shown to agree in the limit, under mild regularity conditions.

[1]  Mario di Bernardo,et al.  Contraction analysis of switched systems via regularization , 2015, Autom..

[2]  S. Shankar Sastry,et al.  Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems , 2013, IEEE Transactions on Automatic Control.

[3]  Luca Dieci,et al.  A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side , 2012, J. Comput. Appl. Math..

[4]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[5]  H. Schättler,et al.  Geometric Optimal Control: Theory, Methods and Examples , 2012 .

[6]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[7]  S. Sastry,et al.  INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL Int. J. Robust Nonlinear Control 2001; 11:435}451 (DOI: 10.1002/rnc.592) , 2022 .

[8]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[9]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[10]  Ian A. Hiskens,et al.  Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .

[11]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[12]  Paulo Ricardo da Silva,et al.  Slow–fast systems and sliding on codimension 2 switching manifolds , 2018, Dynamical Systems.

[13]  Vijay Kumar,et al.  Accurate Event Detection for Simulating Hybrid Systems , 2001, HSCC.

[14]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[15]  G. Smirnov Introduction to the Theory of Differential Inclusions , 2002 .

[16]  Jaume Llibre,et al.  Sliding Vector Fields via Slow--Fast Systems , 2008 .

[17]  S. Shankar Sastry,et al.  Metrization and Simulation of Controlled Hybrid Systems , 2013, IEEE Transactions on Automatic Control.

[18]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[19]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[20]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[21]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[22]  Aaron D. Ames,et al.  Formal and practical completion of Lagrangian hybrid systems , 2009, 2009 American Control Conference.

[23]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[24]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[25]  S. Shankar Sastry,et al.  A Homology Theory for Hybrid Systems: Hybrid Homology , 2005, HSCC.