Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors

The intrinsic mechanisms of drain lag and current collapse in GaN-based high-electron-mobility transistors are studied by using two-dimensional numerical simulations. Simulated drain lag characteristics are in good agreement with reported experimental data. The dynamic pictures of trapping of hot electrons under drain-pulse voltages are discussed in detail. Hot-electron buffer-trapping effect plays an instrumental role in the current collapse mechanism. Polarization-induced interface charges have significant effect on the hot-electron buffer trapping and the current collapse can be weakened by increasing the interface charges. The trapped charges can accumulate at the drain-side gate edge, where the electric field significantly changes and gate-to-drain-voltage-dependent strain is induced, causing a notable current collapse. The simulation results show that the drain voltage range, beyond 5 V, is already in the field of the well-developed hot electron regime. The hot electrons can occupy a great number of...

[1]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[2]  Walter Kruppa,et al.  Trapping effects and microwave power performance in AlGaN/GaN HEMTs , 2001 .

[3]  Yutaka Ohno,et al.  A study on current collapse in AlGaN/GaN HEMTs induced by bias stress , 2003 .

[4]  J. M. Tirado,et al.  Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices , 2007, IEEE Transactions on Electron Devices.

[6]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[7]  Weida Hu,et al.  Self-heating simulation of GaN-based metal-oxide-semiconductor high-electron-mobility transistors including hot electron and quantum effects , 2006 .

[8]  J. Lin,et al.  AlGaN∕GaN∕AlN quantum-well field-effect transistors with highly resistive AlN epilayers , 2006 .

[9]  Valentin O. Turin,et al.  Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN/substrate interface , 2004 .

[10]  C. Gaquiere,et al.  Current instabilities in GaN-based devices , 2001, IEEE Electron Device Letters.

[11]  I. Omura,et al.  Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage , 2005, IEEE Transactions on Electron Devices.

[12]  C. Chen,et al.  AlGaN/GaN heterostructure field-effect transistors on single-crystal bulk AlN , 2003 .

[13]  2D simulation of static surface states in AlGaN/GaN HEMT and GaN MESFET devices , 2005 .

[14]  P. Ye,et al.  Simulation and optimization of GaN-based metal-oxide-semiconductor high-electron-mobility-transistor using field-dependent drift velocity model , 2007 .

[15]  Michael S. Shur,et al.  Induced strain mechanism of current collapse in AlGaN/GaN heterostructure field-effect transistors , 2001 .

[16]  Michael S. Shur,et al.  Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices , 1997 .

[17]  G. Meneghesso,et al.  Surface-related drain current dispersion effects in AlGaN-GaN HEMTs , 2004, IEEE Transactions on Electron Devices.

[18]  Steven C. Binari,et al.  Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors , 2001 .

[19]  G. Meneghesso,et al.  Current Collapse and High-Electric-Field Reliability of Unpassivated GaN/AlGaN/GaN HEMTs , 2006, IEEE Transactions on Electron Devices.

[20]  K. Horio,et al.  Analysis of buffer‐trapping effects on current collapse of GaN FETs , 2006 .

[21]  Michael S. Shur,et al.  AlGaN/InGaN/GaN Double Heterostructure Field-Effect Transistor , 2001 .

[22]  James S. Speck,et al.  Defect structure of metal‐organic chemical vapor deposition‐grown epitaxial (0001) GaN/Al2O3 , 1996 .

[23]  José Luis Sánchez-Rojas,et al.  Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices , 2006 .

[24]  Vincenzo Fiorentini,et al.  Nonlinear Behavior of Spontaneous and Piezoelectric Polarization in III–V Nitride Alloys , 2002 .

[25]  Investigation into the charge distribution and barrier profile tailoring in AlGaN/GaN double heterostructures by self-consistent Poisson–Schrödinger calculations and capacitance–voltage profiling , 2002 .

[26]  S. Karpov,et al.  Bandgap engineering of electronic and optoelectronic devices on native AlN and GaN substrates: A modelling insight , 2005 .

[27]  J. Lin,et al.  Delta-doped AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with high breakdown voltages , 2002 .

[28]  Michael S. Shur,et al.  Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors , 2001 .

[29]  Michael S. Shur,et al.  Simulation of gate lag and current collapse in gallium nitride field-effect transistors , 2004 .

[30]  Peide D. Ye,et al.  Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited) , 2008 .

[31]  Dynamic current-voltage characteristics of III-N HFETs , 2003, IEEE Electron Device Letters.

[32]  M. Shur,et al.  Mechanism of Radio-Frequency Current Collapse in GaN-AlGaN Field-Effect Transistors , 2001 .

[33]  Steven C. Binari,et al.  Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy , 2001 .

[34]  Alexander A. Balandin,et al.  Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors , 2006 .

[35]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[36]  Christiane Poblenz,et al.  Direct measurement of the polarization charge in AlGaN/GaN heterostructures using capacitance–voltage carrier profiling , 2002 .

[37]  E. Kohn,et al.  Transient characteristics of GaN-based heterostructure field-effect transistors , 2003 .

[38]  Zhou,et al.  Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. , 1993, Physical review. B, Condensed matter.

[39]  Oleg Mitrofanov,et al.  Dynamics of trapped charge in GaN/AlGaN/GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy , 2004 .

[40]  Lester F. Eastman,et al.  Microwave power limits of AlGaN/GaN HEMTs under pulsed-bias conditions , 2003 .

[41]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[42]  Peide D. Ye,et al.  GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric , 2005 .

[43]  K. Brennan,et al.  Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model , 2003 .

[44]  D. Grider,et al.  Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies , 1999 .

[45]  R. Mickevicius,et al.  Simulation of hot electron and quantum effects in AlGaN/GaN heterostructure field effect transistors , 2004 .