A Laser Spiking Neuron in a Photonic Integrated Circuit.

There has been a recent surge of interest in the implementation of linear operations such as matrix multipications using photonic integrated circuit technology. However, these approaches require an efficient and flexible way to perform nonlinear operations in the photonic domain. We have fabricated an optoelectronic nonlinear device--a laser neuron--that uses excitable laser dynamics to achieve biologically-inspired spiking behavior. We demonstrate functionality with simultaneous excitation, inhibition, and summation across multiple wavelengths. We also demonstrate cascadability and compatibility with a wavelength multiplexing protocol, both essential for larger scale system integration. Laser neurons represent an important class of optoelectronic nonlinear processors that can complement both the enormous bandwidth density and energy efficiency of photonic computing operations.

[1]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[2]  Paul R. Prucnal,et al.  Microring Weight Banks , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[4]  B. Romeira,et al.  Regenerative memory in time-delayed neuromorphic photonic resonators , 2016, Scientific Reports.

[5]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[6]  Robert H. Walden,et al.  Performance trends for analog to digital converters , 1999, IEEE Commun. Mag..

[7]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[8]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[9]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, ArXiv.

[10]  Paul R. Prucnal,et al.  Scalable Wideband Principal Component Analysis via Microwave Photonics , 2016, IEEE Photonics Journal.

[11]  Paul R. Prucnal,et al.  An integrated analog O/E/O link for multi-channel laser neurons , 2016 .

[12]  Paul R. Prucnal,et al.  Temporal Information Processing With an Integrated Laser Neuron , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  John Chang,et al.  Demonstration of WDM weighted addition for principal component analysis. , 2015, Optics express.

[14]  Xuezhe Zheng,et al.  Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. , 2009, Optics express.

[15]  M. Lipson,et al.  Ultra-low capacitance and high speed germanium photodetectors on silicon. , 2009, Optics express.

[16]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[17]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[18]  Timothy P Lillicrap,et al.  Deep Learning with Dynamic Spiking Neurons and Fixed Feedback Weights , 2017, Neural Computation.

[19]  Yoshua Bengio,et al.  BinaryConnect: Training Deep Neural Networks with binary weights during propagations , 2015, NIPS.

[20]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[21]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[22]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Dmitri B. Strukov,et al.  Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits , 2017, Nature Communications.

[24]  R Kuszelewicz,et al.  Relative refractory period in an excitable semiconductor laser. , 2014, Physical review letters.

[25]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[26]  Karthikeyan Sankaralingam,et al.  Dark Silicon and the End of Multicore Scaling , 2012, IEEE Micro.

[27]  Bhavin J. Shastri,et al.  Neuromorphic Photonic Integrated Circuits , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Y. Kawamura,et al.  Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells , 1996 .

[29]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[30]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[31]  Masaya Notomi,et al.  Ultracompact O-E-O converter based on fF-capacitance nanophotonic integration , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[32]  Fabrizio Gabbiani,et al.  Principles of spike train analysis , 1996 .

[33]  Deog-Kyoon Jeong,et al.  Review of CMOS Integrated Circuit Technologies for High-Speed Photo-Detection , 2017, Sensors.

[34]  Yasuhiko Arakawa,et al.  Quantum well lasers--Gain, spectra, dynamics , 1986 .

[35]  Jingjun Xu,et al.  Nanostructured Plasmonic Medium for Terahertz Bandwidth All‐Optical Switching , 2011, Advanced materials.

[36]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[37]  Shimeng Yu,et al.  Neuro-Inspired Computing With Emerging Nonvolatile Memorys , 2018, Proceedings of the IEEE.

[38]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[39]  G. Stegeman,et al.  Soliton switching in fiber nonlinear directional couplers. , 1988, Optics letters.

[40]  Desmond P. Taylor,et al.  Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation , 1998, IEEE Trans. Commun..

[41]  Paul R Prucnal,et al.  Two-pole microring weight banks. , 2018, Optics letters.

[42]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[43]  J. P. Sokoloff,et al.  A terahertz optical asymmetric demultiplexer (TOAD) , 1993, IEEE Photonics Technology Letters.

[44]  Xin Wang,et al.  Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks , 2017, NIPS.

[45]  Michael Pfeiffer,et al.  Deep Learning With Spiking Neurons: Opportunities and Challenges , 2018, Front. Neurosci..

[46]  Robert H. Walden Analog-to-Digital Conversion in the Early Twenty-First Century , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[47]  Paul R. Prucnal,et al.  Recent progress in semiconductor excitable lasers for photonic spike processing , 2016 .

[48]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[49]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[50]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[51]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[52]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[53]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[54]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[55]  Ojas Parekh,et al.  Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and Its Application to Sparse Coding , 2016, Front. Neurosci..

[56]  A. N. Tait,et al.  The DREAM: An Integrated Photonic Thresholder , 2013, Journal of Lightwave Technology.

[57]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[58]  Paul R. Prucnal,et al.  Spike processing with a graphene excitable laser , 2016, Scientific Reports.

[59]  Manish Kumar Large-scale neuromorphic computing systems , 2016 .

[60]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .

[61]  P.-T. Ho,et al.  All-optical nonlinear switching in GaAs-AlGaAs microring resonators , 2002, IEEE Photonics Technology Letters.

[62]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[63]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[64]  Timothée Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[65]  Yasuhiko Arakawa,et al.  Quantum dot lasers for silicon photonics , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[66]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[67]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[68]  M. Notomi,et al.  Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. , 2007, Optics express.

[69]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[70]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[71]  P. Prucnal,et al.  NEUROMORPHIC PHOTONICS , 2017 .

[72]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[73]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[74]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[75]  François W. Primeau,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014 .

[76]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[77]  S. Thorpe,et al.  STDP-based spiking deep convolutional neural networks for object recognition , 2018 .

[78]  Nick Doran,et al.  All-optical Gbit/s switching using nonlinear optical loop mirror , 1991 .

[79]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[80]  Masaya Notomi,et al.  Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers , 2013, Nature Photonics.