Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land

Abstract. Moisture recycling, the contribution of terrestrial evaporation to precipitation, has important implications for both water and land management. Although terrestrial evaporation consists of different fluxes (i.e. transpiration, vegetation interception, floor interception, soil moisture evaporation, and open-water evaporation), moisture recycling (terrestrial evaporation–precipitation feedback) studies have up to now only analysed their combined total. This paper constitutes the first of two companion papers that investigate the characteristics and roles of different evaporation fluxes for land–atmosphere interactions. Here, we investigate the temporal characteristics of partitioned evaporation on land and present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) – a hydrological land-surface model developed to provide inputs to moisture tracking. STEAM estimates a mean global terrestrial evaporation of 73 900 km3 year-1, of which 59% is transpiration. Despite a relatively simple model structure, validation shows that STEAM produces realistic evaporative partitioning and hydrological fluxes that compare well with other global estimates over different locations, seasons, and land-use types. Using STEAM output, we show that the terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). Most transpiration occurs several hours or days after a rain event, whereas interception is immediate. In agreement with previous research, our simulations suggest that the vegetation's ability to transpire by retaining and accessing soil moisture at greater depth is critical for sustained evaporation during the dry season. We conclude that the differences in temporal characteristics between evaporation fluxes are substantial and reasonably can cause differences in moisture recycling, which is investigated more in the companion paper (van der Ent et al., 2014, hereafter Part 2).

[1]  Hubert H. G. Savenije,et al.  Spatial and temporal variability of canopy and forest floor interception in a beech forest , 2010 .

[2]  M. Dore Climate change and changes in global precipitation patterns: what do we know? , 2005, Environment international.

[3]  Dieter Gerten,et al.  Human alterations of the terrestrial water cycle through land management , 2008 .

[4]  Jiangfeng Wei,et al.  Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA , 2013 .

[5]  A. Verhoef,et al.  Improved evaporative flux partitioning and carbon flux in the land surface model JULES: Impact on the simulation of land surface processes in temperate Europe , 2013 .

[6]  S. Herwitz Interception storage capacities of tropical rainforest canopy trees , 1985 .

[7]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[8]  G. Meehl,et al.  The Importance of Land-Cover Change in Simulating Future Climates , 2005, Science.

[9]  J. Rockström,et al.  Future water availability for global food production: The potential of green water for increasing resilience to global change , 2009 .

[10]  Paul C. West,et al.  A Simple, Minimal Parameter Model for Predicting the Influence of Changing Land Cover on the Land–Atmosphere System+ , 2011 .

[11]  Pavel Kabat,et al.  WATCH: Current Knowledge of the Terrestrial Global Water Cycle , 2011 .

[12]  Peter Troch,et al.  Observed timescales of evapotranspiration response to soil moisture , 2006 .

[13]  Hubert H. G. Savenije,et al.  Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model , 2009 .

[14]  T. Oki,et al.  Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results , 2011 .

[15]  A. Kleidon Global Datasets of Rooting Zone Depth Inferred from Inverse Methods , 2004 .

[16]  Eric F. Wood,et al.  Multi‐model, multi‐sensor estimates of global evapotranspiration: climatology, uncertainties and trends , 2011 .

[17]  P. Jarvis,et al.  CHAPTER 1 – PREDICTING EFFECTS OF VEGETATION CHANGES ON TRANSPIRATION AND EVAPORATION , 1983 .

[18]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[19]  J. Magome,et al.  Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin , 2006 .

[20]  Kyle Hilburn,et al.  Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge , 2010, Proceedings of the National Academy of Sciences.

[21]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[22]  E. Anagnostou,et al.  Evaluation of canopy interception schemes in land surface models , 2007 .

[23]  Sietse O. Los,et al.  Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology , 2009 .

[24]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[25]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[26]  Tetsuya Hiyama,et al.  A nonparametric approach to estimating terrestrial evaporation: Validation in eddy covariance sites , 2012 .

[27]  Hubert H. G. Savenije,et al.  Origin and fate of atmospheric moisture over continents , 2010 .

[28]  Florian Pappenberger,et al.  A revised land hydrology in the ECMWF model: a step towards daily water flux prediction in a fully‐closed water cycle , 2011 .

[29]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[30]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[31]  K. Trenberth Changes in precipitation with climate change , 2011 .

[32]  F. Chapin,et al.  Planetary boundaries: Exploring the safe operating space for humanity , 2009 .

[33]  Dara Entekhabi,et al.  Timescales of Land Surface Evapotranspiration Response. , 1997 .

[34]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[35]  D. Lohmann,et al.  Timescales of land surface evapotranspiration response in the PILPS phase 2(c) , 2003 .

[36]  Markus Reichstein,et al.  Advances in upscaling of eddy covariance measurements of carbon and water fluxes , 2012 .

[37]  Y. Sud,et al.  The time scale of the soil hydrology using a simple water budget model , 1987 .

[38]  Maria de Nazaré Góes Ribeiro,et al.  Estudo da interceptação da água de chuva em cobertura florestal amazônica do tipo terra firme , 1982 .

[39]  C. Willmott,et al.  Uncertainties in Precipitation and Their Impacts on Runoff Estimates , 2004 .

[40]  D. Fitzjarrald,et al.  Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. , 2009 .

[41]  Ramakrishna R. Nemani,et al.  A generalized, bioclimatic index to predict foliar phenology in response to climate , 2004 .

[42]  D. Hughes,et al.  Basin‐scale performance of a semidistributed rainfall‐runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River , 2014 .

[43]  S. Seneviratne,et al.  Contrasting response of European forest and grassland energy exchange to heatwaves , 2010 .

[44]  Carl Folke,et al.  Linkages among water vapour flows, food production and terrestrial ecosystem services. , 1999 .

[45]  Diego G. Miralles,et al.  Magnitude and variability of land evaporation and its components at the global scale , 2011 .

[46]  Sietse O. Los,et al.  Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model , 2003 .

[47]  R. B. Jackson,et al.  Modeling Root Water Uptake in Hydrological and Climate Models. , 2001 .

[48]  K. Eckhardt,et al.  Plant parameter values for models in temperate climates , 2003 .

[49]  W. Steffen,et al.  Human modification of global water vapor flows from the land surface. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Petra Döll,et al.  Validation of a new global 30-min drainage direction map , 2002 .

[51]  Axel Kleidon,et al.  Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation , 2000 .

[52]  S. Zaehle,et al.  Contemporary “green” water flows: Simulations with a dynamic global vegetation and water balance model , 2005 .

[53]  R. Jeu,et al.  Global canopy interception from satellite observations , 2010 .

[54]  Hubert H. G. Savenije,et al.  Length and time scales of atmospheric moisture recycling , 2010 .

[55]  Ankur R. Desai,et al.  Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets , 2012 .

[56]  Syukuro Manabe,et al.  The influence of potential evaporation on the variabilities of simulated soil wetness and climate , 1988 .

[57]  Robert E. Dickinson,et al.  Time scales of land surface hydrology , 2004 .

[58]  W. Bouten,et al.  Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia , 2000 .

[59]  S. J. Birks,et al.  Terrestrial water fluxes dominated by transpiration , 2013, Nature.

[60]  P. Dirmeyer,et al.  The Sensitivity of Simulated River Discharge to Land Surface Representation and Meteorological Forcings , 2010, Journal of Hydrometeorology.

[61]  Randal D. Koster,et al.  The Interplay between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models , 1997 .

[62]  Petra Döll,et al.  Global modeling of irrigation water requirements , 2002 .

[63]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[64]  M. Heikinheimo,et al.  Modelling evapotranspiration from a barley field over the growing season , 1998 .

[65]  J. Tomasella,et al.  Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. , 2007 .

[66]  James S. Famiglietti,et al.  Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle , 2013 .

[67]  W. Boutena,et al.  Gross rainfall and its partitioning into throughfall , stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia , 2000 .

[68]  Charles J Vörösmarty,et al.  Intercomparison of Methods for Calculating Potential Evaporation in Regional and Global Water Balance Models , 1996 .

[69]  Peter E. Thornton,et al.  The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction , 2007 .

[70]  O. Tuinenburg Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent , 2013 .

[71]  W. James Shuttleworth,et al.  Terrestrial Hydrometeorology: Shuttleworth/Terrestrial Hydrometeorology , 2012 .

[72]  Wim G.M. Bastiaanssen,et al.  Evaluation of the temporal variability of the evaporative fraction in a tropical watershed , 2004 .

[73]  W. Rawls,et al.  Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions , 2006 .

[74]  Wim G.M. Bastiaanssen,et al.  Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model , 2012 .

[75]  Xubin Zeng,et al.  Global Vegetation Root Distribution for Land Modeling , 2001 .

[76]  R. Koster,et al.  Land Surface Controls on Hydroclimatic Means and Variability , 2012 .

[77]  R. Tshimanga Hydrological uncertainty analysis and scenario-based streamflow modelling for the Congo River Basin , 2012 .

[78]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[79]  I. Fung,et al.  Root functioning modifies seasonal climate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  G. Miguez-Macho,et al.  The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration , 2012 .

[81]  Hubert H. G. Savenije,et al.  Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling , 2014 .

[82]  M. Molen,et al.  Responses of surface conductance to forest environments in the Far East , 2008 .

[83]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[84]  L. S. Pereira,et al.  A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method , 2006 .

[85]  Kevin E. Trenberth,et al.  Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations , 2002 .

[86]  S. T. Gower,et al.  Worldwide Historical Estimates of Leaf Area Index, 1932-2000 , 2001 .

[87]  W. L. Darnell,et al.  A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data II. Regional and global patterns of seasonal and annual variations , 1998 .

[88]  K. Trenberth,et al.  Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data , 2007 .

[89]  W. Schlesinger,et al.  Transpiration in the global water cycle , 2014 .

[90]  Hubert H. G. Savenije,et al.  The importance of interception and why we should delete the term evapotranspiration from our vocabulary , 2004 .

[91]  C. Gruhier,et al.  A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements , 2013 .

[92]  R. Koster,et al.  The Influence of Land Surface Moisture Retention on Precipitation Statistics. , 1996 .

[93]  Radhika Vidanage De Silva,et al.  World water demand and supply, 1990 to 2025: scenarios and issues , 1998 .

[94]  Steven M. De Jong,et al.  Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis , 2007, Int. J. Geogr. Inf. Sci..

[95]  J. Stewart Modelling surface conductance of pine forest , 1988 .

[96]  Hubert H. G. Savenije,et al.  Impact of the Sudd wetland on the Nile hydroclimatology , 2005 .

[97]  S. J. Birks,et al.  Jasechko et al. reply , 2014, Nature.

[98]  R. B. Jackson,et al.  A global analysis of root distributions for terrestrial biomes , 1996, Oecologia.

[99]  Hubert H. G. Savenije,et al.  Testing the realism of a topography driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China , 2013 .

[100]  S. Seneviratne,et al.  HESS Opinions: A perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes , 2014 .

[101]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[102]  Sonia I. Seneviratne,et al.  HESS Opinions : A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation , 2014 .

[103]  P. Döll,et al.  MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling , 2010 .

[104]  C. Jacobs,et al.  Forests and regional scale processes , 1989 .

[105]  P. Crutzen Geology of mankind , 2002, Nature.

[106]  Hubert H. G. Savenije,et al.  Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions , 2011 .

[107]  Dara Entekhabi,et al.  Effect of a canopy interception reservoir on hydrological persistence in a general circulation model , 1995 .

[108]  T. A. Black,et al.  Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada Research Network based on remote sensing and footprint modelling , 2011 .

[109]  W. Massman,et al.  Terrestrial water fluxes dominated by transpiration: Comment , 2014 .

[110]  N. Verhoest,et al.  El Niño-La Niña cycle and recent trends in continental evaporation , 2014 .

[111]  W. Oechel,et al.  Energy balance closure at FLUXNET sites , 2002 .

[112]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[113]  H. A. Mooney,et al.  Maximum rooting depth of vegetation types at the global scale , 1996, Oecologia.