Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence

Abstract Optimization and inverse design methods based on stochastic and, in particular, evolutionary algorithms, are currently being used in aeronautics since they offer a useful tool to help solving current and future technological problems. Despite their advantages, all of the population-based search algorithms require excessive CPU time due to the excessive number of candidate solutions which need to be evaluated through costly computational models. This paper focuses on the reduction of this computing cost, so as to make stochastic optimization both efficient and effective. Emphasis is laid on techniques which rely on the construction and use of surrogate or approximation models which may substitute for the exact and costly evaluation tool. A literature survey of a number of relevant methods is followed by numerous indicative examples, which demonstrate the usefulness of these methods.

[1]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[2]  Doyle Knight,et al.  Three dimensional optimization of supersonic inlets , 1999 .

[3]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[4]  Kyriakos C. Giannakoglou,et al.  A Design Method For Turbine Blades Using Genetic Algorithms On Parallel Computers , 1998 .

[5]  Alan Davies,et al.  An Introduction to Computational Geometry for Curves and Surfaces , 1996 .

[6]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  A. E. Eiben,et al.  Orgy in the Computer: Multi-Parent Reproduction in Genetic Algorithms , 1995, ECAL.

[8]  Stephane Pierret,et al.  Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network , 1998 .

[9]  George S. Dulikravich,et al.  Three-Dimensional Aerodynamic Shape Optimization Using Genetic and Gradient Search Algorithms , 1997 .

[10]  Tomoyuki Hiroyasu,et al.  Distributed genetic algorithms with a new sharing approach in multiobjective optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Thomas Bäck,et al.  Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies , 1997, Evolutionary Computation.

[12]  Jacques Periaux,et al.  Aerodynamic shape optimization using a hierarchical Genetic Algorithm , 2000 .

[13]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[14]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[15]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[16]  Madara Ogot,et al.  Stochastic approach to optimal aerodynamic shape design , 1996 .

[17]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[18]  Kyriakos C. Giannakoglou,et al.  Solution of flow problems using unstructured grids on distributed memory platforms , 1998 .

[19]  Scott Schreck,et al.  Neural networks: Applications and opportunities in aeronautics , 1996 .

[20]  Shigeru Obayashi,et al.  Niching and Elitist Models for MOGAs , 1998, PPSN.

[21]  Mourad Sefrioui,et al.  Algorithmes evolutionnaires pour le calcul scientifique : application a l'electromagnetisme et a la mecanique des fluides numeriques , 1998 .

[22]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[23]  M. L. Shelton,et al.  OPTIMIZATION OF A TRANSONIC TURBINE AIRFOIL USING ARTIFICIAL INTELLIGENCE,CFD AND CASCADE TESTING , 1993 .

[24]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[25]  Khaled Rasheed,et al.  AUTOMATED OPTIMAL DESIGN OF TWO-DIMENSIONAL SUPERSONIC MISSILE INLETS , 1998 .

[26]  Andrzej Cichocki,et al.  Neural networks for optimization and signal processing , 1993 .

[27]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[30]  Anatol Rapoport,et al.  Two-person game theory , 1966 .

[31]  Haym Hirsh,et al.  Gado: a genetic algorithm for continuous design optimization , 1998 .

[32]  Feng Zhenping,et al.  Aerodynamic Optimum Design of Transonic Turbine Cascades Using Genetic Algorithms , 1997 .

[33]  H. Sobieczky,et al.  Sensitivity of aerodynamic optimization to parameterized target functions , 2002 .

[34]  J. Hess Panel Methods in Computational Fluid Dynamics , 1990 .

[35]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[36]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[37]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[38]  A. Ratle Optimal sampling strategies for learning a fitness model , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[40]  J. Peiro,et al.  Distributed evolutionary computational methods for multiobjective and multidisciplinary optimization , 1998 .

[41]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[42]  Kyriakos C. Giannakoglou,et al.  Acceleration of genetic algorithms using artificial neural networks: Theoretical background , 2000 .

[43]  Thomas Bäck,et al.  An Overview of Parameter Control Methods by Self-Adaption in Evolutionary Algorithms , 1998, Fundam. Informaticae.

[44]  Marios K. Karakasis,et al.  Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters , 2001 .

[45]  Virginia Torczon,et al.  Using approximations to accelerate engineering design optimization , 1998 .

[46]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[47]  Baoding Liu,et al.  Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms , 1998 .

[48]  Thomas J. Martin,et al.  Minimization of Coolant Mass Flow Rate in Internally Cooled Gas Turbine Blades , 1999 .

[49]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[50]  Haym Hirsh,et al.  Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models , 2000, GECCO.

[51]  Kyriakos C. Giannakoglou Designing Turbomachinery Blades Using Evolutionary Methods , 1999 .

[52]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[53]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[54]  Anthony G. Sheard,et al.  Automatic Genetic Optimization Approach to 2D Blade Profile Design for Steam Turbines , 1997 .

[55]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[56]  Jim Antonisse,et al.  A New Interpretation of Schema Notation that Overtums the Binary Encoding Constraint , 1989, ICGA.

[57]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[58]  Alexios P. Giotis,et al.  Acceleration of genetic algorithms using artificial neural networks: Application of the method , 2000 .

[59]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[60]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[61]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[62]  Lefteri H. Tsoukalas,et al.  Fuzzy and neural approaches in engineering , 1997 .

[63]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .