Joint estimation of activity signal and HRF in fMRI using fused LASSO

In this paper, we propose a novel voxel-based method for joint estimation of underlying activity signal and hemodynamic response function (HRF) in functional magnetic resonance imaging (fMRI). In the proposed two stage iterative framework, fused-least absolute shrinkage and selection operator (Fused LASSO) penalty is utilized for activity detection and HRF estimation. Conditions of smoothness and sparsity are imposed on HRF for its estimation. The validity of the proposed method is demonstrated on both synthetic and real fMRI data.

[1]  Abd-Krim Seghouane,et al.  Consistent hemodynamic response estimation function in fMRI using sparse prior information , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[2]  Dimitri Van De Ville,et al.  Activelets and sparsity: a new way to detect brain activation from fMRI data , 2007, SPIE Optical Engineering + Applications.

[3]  Natalia Petridou,et al.  Paradigm free mapping with sparse regression automatically detects single‐trial functional magnetic resonance imaging blood oxygenation level dependent responses , 2011, Human brain mapping.

[4]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[5]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[6]  Priya Aggarwal,et al.  Joint Estimation of Hemodynamic Response Function and Voxel Activation in Functional MRI Data , 2015, MICCAI.

[7]  M. Lindquist,et al.  Validity and power in hemodynamic response modeling: A comparison study and a new approach , 2007, Human brain mapping.

[8]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[9]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[10]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[11]  Amr Ahmed,et al.  Recovering time-varying networks of dependencies in social and biological studies , 2009, Proceedings of the National Academy of Sciences.

[12]  Jean Gotman,et al.  Detection of epileptic activity in fMRI without recording the EEG , 2012, NeuroImage.

[13]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[14]  Bharat B. Biswal,et al.  Resting state fMRI: A personal history , 2012, NeuroImage.

[15]  F. Bowman Brain Imaging Analysis. , 2014, Annual review of statistics and its application.

[16]  L. Shah,et al.  Functional magnetic resonance imaging. , 2010, Seminars in roentgenology.

[17]  Dimitri Van De Ville,et al.  Structured sparse deconvolution for paradigm free mapping of functional MRI data , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[18]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[19]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[20]  Aria Nosratinia,et al.  Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI , 2014, Medical Image Anal..

[21]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[22]  Mohamed-Jalal Fadili,et al.  Activelets: Wavelets for sparse representation of hemodynamic responses , 2011, Signal Process..

[23]  J. Pekar,et al.  fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis , 2001, NeuroImage.

[24]  Dimitri Van De Ville,et al.  Total activation: fMRI deconvolution through spatio-temporal regularization , 2013, NeuroImage.

[25]  Zafer Dogan,et al.  Detecting spontaneous brain activity in functional magnetic resonance imaging using finite rate of innovation , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[26]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[27]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[28]  Namgil Lee,et al.  Regularization of voxelwise autoregressive model for analysis of functional magnetic resonance imaging data , 2011 .