Modeling the wave propagation in viscoacoustic media: An efficient spectral approach in time and space domain

Abstract We present an efficient and accurate modeling approach for wave propagation in anelastic media, based on a fractional spatial differential operator. The problem is solved with the Fourier pseudo-spectral method in the spatial domain and the REM (rapid expansion method) in the time domain, which, unlike the finite-difference and pseudo-spectral methods, offers spectral accuracy. To show the accuracy of the scheme, an analytical solution in a homogeneous anelastic medium is computed and compared with the numerical solution. We present an example of wave propagation at a reservoir scale and show the efficiency of the algorithm against the conventional finite-difference scheme. The new method, being spectral in the time and space simultaneously, offers a highly accurate and efficient solution for wave propagation in attenuating media.

[1]  Alfred Behle,et al.  NUMERICAL SOLUTION OF THE ACOUSTIC AND ELASTIC WAVE EQUATIONS BY A NEW RAPID EXPANSION METHOD1 , 1989 .

[2]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[3]  José M. Carcione,et al.  Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives , 2014 .

[4]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[5]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[6]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[7]  Paul L. Stoffa,et al.  Decoupled equations for reverse time migration in tilted transversely isotropic media , 2012 .

[8]  Yu Zhang,et al.  A stable TTI reverse time migration and its implementation , 2011 .

[9]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[10]  José M. Carcione,et al.  Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media , 2011 .

[11]  José M. Carcione,et al.  Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives , 2002 .

[12]  Michele Caputo,et al.  Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation. , 2011, Ultrasound in medicine & biology.

[13]  F. Ricci Book Review: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals , 1999 .

[14]  Imaging septaria geobody in the Boom Clay using a Q-compensated reverse-time migration , 2016, Netherlands Journal of Geosciences.

[15]  Lexing Ying,et al.  Seismic wave extrapolation using lowrank symbol approximation , 2013 .

[16]  Paul L. Stoffa,et al.  Time evolution of the wave equation using rapid expansion method , 2010 .

[17]  Joe Dellinger,et al.  Accurate Wave-Equation Modeling , 1989 .

[18]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[19]  Z. Koren,et al.  AN ACCURATE SCHEME FOR SEISMIC FORWARD MODELLING , 1987 .

[20]  M. Carcione,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1997 .

[21]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Michael Pippig PFFT: An Extension of FFTW to Massively Parallel Architectures , 2013, SIAM J. Sci. Comput..

[24]  Yu Zhang,et al.  One-step extrapolation method for reverse time migration , 2009 .

[25]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[26]  G. McMechan,et al.  Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation , 1996 .

[27]  Yu Zhang,et al.  Two-step Explicit Marching Method For Reverse Time Migration , 2008 .

[28]  J. Carcione,et al.  Computational poroelasticity — A review , 2010 .

[29]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[30]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[31]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[32]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[33]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[34]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[35]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[36]  Sergey Fomel,et al.  Viscoacoustic modeling and imaging using low-rank approximation , 2014 .

[37]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[38]  José M. Carcione,et al.  A generalization of the Fourier pseudospectral method , 2010 .

[39]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[40]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[41]  José M. Carcione,et al.  WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID , 1988 .