Torus and Other Networks as Communication Networks With Up to Some Hundred Points

To be used as message passing networks of computers we consider graphs of degree D and diameter K. To obtain bounds for the average distance Ak (and K) with any given number N of nodes and given D we generalize Moore graphs to Moore* graphs minimizing Ak.

[1]  R. M. Storwick,et al.  Improved Construction Techniques for (d, k) Graphs , 1970, IEEE Transactions on Computers.

[2]  Kenneth Steiglitz,et al.  The Design of Small-Diameter Networks by Local Search , 1979, IEEE Transactions on Computers.

[3]  Bruce W. Arden,et al.  A Regular Network for Multicomputer Systems , 1982, IEEE Transactions on Computers.

[4]  Henry D. Friedman,et al.  A Design for (d, k) Graphs , 1966, IEEE Trans. Electron. Comput..

[5]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[7]  B W Arden,et al.  Analysis of Chordal Ring Network , 1981, IEEE Transactions on Computers.

[8]  J. Petersen Die Theorie der regulären graphs , 1891 .

[9]  I. Korn On (d, k) Graphs , 1967 .

[10]  H. D. Friedman,et al.  On the impossibility of certain Moore graphs , 1971 .

[11]  Mamoru Maekawa Optimal processor interconnection topologies , 1981, ISCA '81.

[12]  Bernard Elspas,et al.  Topological constraints on interconnection-limited logic , 1964, SWCT.

[13]  E. Bannai,et al.  On finite Moore graphs , 1973 .

[14]  Siegel Interconnection Networks for Parallel and Distributed Processing: An Overview , 1981, IEEE Transactions on Computers.

[15]  Sheldon B. Akers,et al.  On the Construction of (d, k) Graphs , 1965, IEEE Trans. Electron. Comput..