Learning from nature: Use material architecture to break the performance tradeoffs

[1]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[3]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[4]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[5]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[6]  J. Buckwalter,et al.  Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. , 1996, Instructional course lectures.

[7]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[8]  Duc Truong Pham,et al.  A comparison of rapid prototyping technologies , 1998 .

[9]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[10]  R. Suzuki,et al.  Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth , 2000, Anatomy and Embryology.

[11]  M. Burghammer,et al.  Twisted plywood pattern of collagen fibrils in teleost scales: an X-ray diffraction investigation. , 2001, Journal of structural biology.

[12]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[13]  R. Lakes,et al.  High Damping Composite Materials: Effect of Structural Hierarchy , 2002 .

[14]  M. F. Ashby * Hybrids to fill holes in material property space , 2005 .

[15]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[16]  Huajian Gao Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[17]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[18]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[19]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[20]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[21]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[22]  J. Currey Mechanical properties and adaptations of some less familiar bony tissues. , 2010, Journal of the mechanical behavior of biomedical materials.

[23]  Huajian Gao,et al.  On optimal hierarchy of load-bearing biological materials , 2011, Proceedings of the Royal Society B: Biological Sciences.

[24]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[25]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[26]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[27]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[28]  Longmao Zhao,et al.  Hierarchical composite honeycombs , 2012 .

[29]  R. Ritchie,et al.  Micromechanical models to guide the development of synthetic 'brick and mortar' composites , 2012 .

[30]  J. Papadopoulos,et al.  Hierarchical honeycombs with tailorable properties , 2012 .

[31]  A. Bandyopadhyay,et al.  Bone tissue engineering using 3D printing , 2013 .

[32]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[33]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[34]  M. Buehler,et al.  Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. , 2014, Soft matter.

[35]  Michael C. McAlpine,et al.  3D printed quantum dot light-emitting diodes. , 2014, Nano letters.

[36]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[37]  G. Hulbert,et al.  Simultaneously high stiffness and damping in nanoengineered microtruss composites. , 2014, ACS nano.

[38]  M. Buehler,et al.  Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. , 2015, ACS biomaterials science & engineering.

[39]  Shuhui Yu,et al.  Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. , 2015, Nanoscale.

[40]  Steve Marschner,et al.  Microstructures to control elasticity in 3D printing , 2015, ACM Trans. Graph..

[41]  Randall M. Erb,et al.  Designing bioinspired composite reinforcement architectures via 3D magnetic printing , 2015, Nature Communications.

[42]  A. Studart,et al.  Multimaterial magnetically assisted 3D printing of composite materials , 2015, Nature Communications.

[43]  M. Boyce,et al.  Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. , 2015, Soft matter.

[44]  Z. Zhang,et al.  Remarkable shape memory effect of a natural biopolymer in aqueous environment. , 2015, Biomaterials.

[45]  Lifeng Wang,et al.  Multiband wave filtering and waveguiding in bio-inspired hierarchical composites , 2015 .

[46]  Elise M. Stewart,et al.  3D printing of layered brain-like structures using peptide modified gellan gum substrates. , 2015, Biomaterials.

[47]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[48]  Alex J. Zelhofer,et al.  Resilient 3D hierarchical architected metamaterials , 2015, Proceedings of the National Academy of Sciences.

[49]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[50]  F. Yuan,et al.  Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility , 2015, Proceedings of the National Academy of Sciences.

[51]  A. To,et al.  Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing , 2015, 1502.04568.

[52]  R. Soares,et al.  Designing Biomaterials for 3D Printing. , 2016, ACS biomaterials science & engineering.

[53]  Grace X. Gu,et al.  Bone‐Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing   , 2016 .

[54]  J. Sanjayan,et al.  Method of formulating geopolymer for 3D printing for construction applications , 2016 .

[55]  E. Tervoort,et al.  3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics , 2016, Advanced materials.

[56]  T. Q. Bui,et al.  Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system , 2016 .

[57]  D. Floreano,et al.  Variable Stiffness Fiber with Self‐Healing Capability , 2016, Advanced materials.

[58]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[59]  Di Zhang,et al.  Configuration design and fabrication of laminated titanium matrix composites , 2016 .

[60]  Pedro Lopes,et al.  Metamaterial Mechanisms , 2016, UIST.

[61]  G. Agez,et al.  Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa. , 2017, Acta biomaterialia.

[62]  J. Weaver,et al.  Materials science and architecture , 2017 .

[63]  Grace X. Gu,et al.  Hierarchically Enhanced Impact Resistance of Bioinspired Composites , 2017, Advanced materials.

[64]  Grace X. Gu,et al.  Printing nature: Unraveling the role of nacre's mineral bridges. , 2017, Journal of the mechanical behavior of biomedical materials.

[65]  Hyun‐Wook Lee,et al.  Practical considerations of Si-based anodes for lithium-ion battery applications , 2017, Nano Research.

[66]  James C. Weaver,et al.  Rational design of reconfigurable prismatic architected materials , 2017, Nature.

[67]  J. Aizenberg,et al.  Controlled growth and form of precipitating microsculptures , 2017, Science.

[68]  Markus J. Buehler,et al.  Computational Framework to Predict Failure and Performance of Bone-Inspired Materials. , 2017, ACS biomaterials science & engineering.

[69]  Chuin-Shan Chen,et al.  Microcrack patterns control the mechanical strength in the biocomposites , 2018 .

[70]  K. Shea,et al.  Stepwise graded struts for maximizing energy absorption in lattices , 2018, Extreme Mechanics Letters.

[71]  F. Chiang,et al.  An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites , 2018 .

[72]  Lifeng Wang,et al.  Designing Phononic Crystals with Wide and Robust Band Gaps , 2018 .

[73]  M. Meyers,et al.  Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures , 2018, Advanced materials.

[74]  J. R. Raney,et al.  Rotational 3D printing of damage-tolerant composites with programmable mechanics , 2018, Proceedings of the National Academy of Sciences.

[75]  I. Ashcroft,et al.  Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures , 2018, Composite Structures.

[76]  F. Scarpa,et al.  3D Printed Hierarchical Honeycombs with Shape Integrity under Large Compressive Deformations , 2018 .

[77]  M. Meyers,et al.  Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis , 2018, Advanced Functional Materials.

[78]  Lifeng Wang,et al.  3D Printing of Biomimetic Composites with Improved Fracture Toughness , 2018, Acta Materialia.

[79]  Lin-zhi Wu,et al.  Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps , 2019, Journal of the Mechanics and Physics of Solids.

[80]  Yang Yu,et al.  Biomimetic architected materials with improved dynamic performance , 2019, Journal of the Mechanics and Physics of Solids.