New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schrödinger equation with variable coefficients

Abstract In this paper, we construct explicit rogue wave solutions and dark-bright solutions for the inhomogeneous coupled nonlinear Schrodinger equation with variable coefficients by means of similarity transformations. Some explicit solutions to the coupled nonlinear Schrodinger equation with potentials and nonlinearities depending on both time and spatial coordinates are considered. We present the general approach and use it to calculate rogue wave solutions and dark-bright solutions for nonlinearities and potentials of physical interest in applications to Bose–Einstein condensates and nonlinear optics.

[1]  Fatkhulla Kh. Abdullaev,et al.  Optical Solitons , 2014 .

[2]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[3]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[5]  A. Bouferguene,et al.  Gauss–Bessel quadrature: A tool for the evaluation of Barnett–Coulson/Löwdin functions , 2006 .

[6]  Zhenya Yan,et al.  Nonautonomous "rogons" in the inhomogeneous nonlinear Schrödinger equation with variable coefficients , 2010, 1009.3731.

[7]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[8]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[9]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[10]  Lei Wu,et al.  Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Zhenya Yan,et al.  Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[13]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[14]  Wen-Xiu Ma,et al.  Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm , 2012, Appl. Math. Comput..

[15]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[16]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[17]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[18]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[19]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[20]  Wen-Xiu Ma,et al.  A refined invariant subspace method and applications to evolution equations , 2012, 1204.5518.

[21]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[22]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[23]  A. Peacock,et al.  Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  MA Wen-Xiu A refined invariant subspace method and applications to evolution equations , 2012 .

[25]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[26]  Alwyn C. Scott,et al.  Launching a Davydov Soliton: I. Soliton Analysis , 1984 .

[27]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[28]  A. Vagov,et al.  Instability and stratification of a two-component Bose-Einstein condensate in a trapped ultracold gas , 1997 .

[29]  Zhenya Yan Financial Rogue Waves , 2009, 0911.4259.

[30]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[31]  C. Garrett Rogue waves , 2012 .

[32]  Harald E. Krogstad,et al.  Oceanic Rogue Waves , 2008 .

[33]  Jingsong He,et al.  Designable Integrability of the Variable Coefficient Nonlinear Schrödinger Equations , 2010, 1008.2517.

[34]  Karsten Trulsen,et al.  NOTE ON BREATHER TYPE SOLUTIONS OF THE NLS AS MODELS FOR FREAK-WAVES , 1999 .

[35]  Jinliang Zhang,et al.  The exact solutions and the relevant constraint conditions for two nonlinear Schrodinger equations with variable coefficients , 2009 .

[36]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[37]  B. Guo,et al.  Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations , 2011 .

[38]  M Lakshmanan,et al.  Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[40]  Wenxiu Ma Generalized Bilinear Differential Equations , 2012 .

[41]  Efim Pelinovsky,et al.  Physical Mechanisms of the Rogue Wave Phenomenon , 2003 .

[42]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[43]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[44]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[45]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[46]  V. I. Bespalov,et al.  Filamentary Structure of Light Beams in Nonlinear Liquids , 1966 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Jingsong He,et al.  Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative , 2012, 1202.0356.

[49]  C. Dai,et al.  Exact spatial similaritons and rogons in 2D graded-index waveguides. , 2010, Optics letters.

[50]  Min Chen,et al.  Direct search for exact solutions to the nonlinear Schrödinger equation , 2009, Appl. Math. Comput..

[51]  V. Shrira,et al.  Can bottom friction suppress ‘freak wave’ formation? , 2008, Journal of Fluid Mechanics.

[52]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[53]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[54]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[55]  M. Wadati,et al.  Wave Propagation in Nonlinear Lattice. III , 1975 .

[56]  Wenrui Xue,et al.  A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients , 2004 .

[57]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .