Dynamics and metallicity of far-infrared selected galaxies

We present near-infrared integral field spectroscopy of ten Herschel selected galaxies at z~1.5. From detailed mapping of the H$\alpha$ and [NII] emission lines we trace the dynamics, star formation rates, metallicities and also investigate gas fractions for these galaxies. For a few galaxies the distribution of star formation as traced by H$\alpha$ only traces a small fraction of the stellar disc, which could be tracing recent minor merging events. The rest-frame ultraviolet (UV) continuum emission often has a distribution completely different from H$\alpha$, which warns about the use of UV-SED based star formation tracers in these systems. Our analysis of galaxy dynamics shows that minor dynamical disruptions (e.g. minor merging) are generally not enough to cause a deviation from the established 'Main Sequence' relation. Most galaxies are found to follow the fundamental metallicity relation (FMR), although with large scatter. One galaxy, (a small satellite galaxy of a massive companion) is found to deviate strongly from the FMR. This deviation is in nice agreement with the correlation recently discovered in local galaxies between gas metallicity and environment, which has been ascribed to enriched inter-galactic medium (IGM) in dense environments, and therefore suggests that here the IGM was already significantly enriched by z~1.5.

[1]  F. Mannucci,et al.  The evolution of the dust and gas content in galaxies , 2013, 1311.3670.

[2]  R. Maiolino,et al.  The dependence of the galaxy mass-metallicity relation on environment and the implied metallicity of the IGM , 2013, 1311.1816.

[3]  F. Mannucci,et al.  Metallicity evolution, metallicity gradients, and gas fractions at z ~ 3.4 , 2013, 1311.4576.

[4]  B. Lundgren,et al.  A CANDELS–3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < z < 1.5 , 2013, 1310.5702.

[5]  I. Smail,et al.  A fundamental metallicity relation for galaxies at z = 0.84–1.47 from HiZELS , 2013, 1309.0506.

[6]  F. Mannucci,et al.  Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA , 2013, 1308.5113.

[7]  L. Kewley,et al.  NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H ii REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA , 2013, 1307.5950.

[8]  L. Colina,et al.  VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties , 2013, 1307.1659.

[9]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166 , 2013, 1304.0668.

[10]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[11]  L. Kewley,et al.  SYSTEMATICS IN METALLICITY GRADIENT MEASUREMENTS. I. ANGULAR RESOLUTION, SIGNAL TO NOISE, AND ANNULAR BINNING , 2013, 1302.6232.

[12]  U. L. Laguna,et al.  LOCAL TADPOLE GALAXIES: DYNAMICS AND METALLICITY , 2013, 1302.4352.

[13]  I. Smail,et al.  The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey , 2012, 1212.4834.

[14]  Andreas Burkert,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES , 2012, 1211.6160.

[15]  D.Lutz,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES* , 2012 .

[16]  Edinburgh,et al.  The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. , 2012, 1209.1395.

[17]  E. Jullo,et al.  THE ORIGIN AND EVOLUTION OF METALLICITY GRADIENTS: PROBING THE MODE OF MASS ASSEMBLY AT z ≃ 2 , 2012, 1207.4489.

[18]  B. Garilli,et al.  Comparison of star formation rates from Hα and infrared luminosity as seen by Herschel , 2012, 1205.4573.

[19]  B. Garilli,et al.  MASSIV: Mass Assembly Survey with SINFONI in VVDS - III. Evidence for positive metallicity gradients in z ~ 1.2 star-forming galaxies , 2011, 1111.3697.

[20]  F. Mannucci,et al.  The metallicity properties of zCOSMOS galaxies at 0.2 < z < 0.8 , 2011, 1110.4408.

[21]  P. Cox,et al.  THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.

[22]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[23]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[24]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[25]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[26]  A. Cimatti,et al.  Building the cosmic infrared background brick by brick with Herschel/PEP. ⋆ , 2011, 1106.3070.

[27]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[28]  L. Kewley,et al.  METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.

[29]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[30]  A. Cimatti,et al.  Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3 , 2010, 1007.4180.

[31]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[32]  F. Mannucci,et al.  Gas accretion as the origin of chemical abundance gradients in distant galaxies , 2010, Nature.

[33]  R. Ellis,et al.  MEASUREMENT OF A METALLICITY GRADIENT IN A z = 2 GALAXY: IMPLICATIONS FOR INSIDE-OUT ASSEMBLY HISTORIES , 2010, 1010.1538.

[34]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[35]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[36]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[37]  D. Thilker,et al.  THE METAL-ENRICHED OUTER DISK OF NGC 2915 , 2010, 1004.1342.

[38]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[39]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[40]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[41]  L. Kewley,et al.  GALAXY MERGERS AND THE MASS–METALLICITY RELATION: EVIDENCE FOR NUCLEAR METAL DILUTION AND FLATTENED GRADIENTS FROM NUMERICAL SIMULATIONS , 2010, 1001.1728.

[42]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[43]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[44]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[45]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[46]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[47]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[48]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[49]  Richard S. Ellis,et al.  The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.

[50]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[51]  R. Maiolino,et al.  A deep X‐ray observation of M82 with XMM–Newton , 2008, 0802.2943.

[52]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[53]  D. Erb Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A MODEL FOR STAR FORMATION, GAS FLOWS AND CHEMICAL EVOLUTION IN GALAXIES AT HIGH REDSHIFTS , 2022 .

[54]  G. Zamorani,et al.  Unveiling Obscured Accretion in the Chandra Deep Field-South , 2007, 0705.2864.

[55]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[56]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[57]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[58]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[59]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[60]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[61]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[62]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[63]  Gas metallicity in the narrow-line regions of high-redshift active galactic nuclei , 2005, astro-ph/0508652.

[64]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[65]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[66]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[67]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[68]  L. Kewley,et al.  The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey , 2002, astro-ph/0208508.

[69]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[70]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[71]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[72]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[73]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.