Sparse MEG inverse solutiona via hierarchical Bayesian modeling: Evaluation with a parallel fMRI study

Here we demonstrate how sparse cortically constrained MEG inverse solutions can be obtained via the hierarchical Bayesian minimum-norm estimation approach, wherein Gaussian priors with individual precisions (inverse variances) are first assumed for the distributed current amplitudes at each cortical location. A common second-level prior (hyperprior) of specific form is then imposed on the prior precisions to cause most of the current amplitudes to vanish, thus resulting in sparse inverse solutions. We validated the approach using an empirical dataset, wherein identical visual stimulation experiments were carried out in MEG and fMRI. The physiologically highly feasible fMRI statistical parametric maps were used as a reference for the MEG solutions. The results show that the hierarchical Bayesian approach is capable of producing solutions concordant with the fMRI data in a rather automated fashion, despite the characteristic complexity of the visual evoked magnetic fields. The proposed method of selecting the hyperprior to obtain sparsity provides an effective and straightforward way to regularise the solutions. We also discuss the possibility of utilising fMRI information in the MEG source reconstruction.

[1]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[2]  Seppo P. Ahlfors,et al.  Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates , 2004, NeuroImage.

[3]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[4]  Linda Henriksson,et al.  Multifocal fMRI mapping of visual cortical areas , 2005, NeuroImage.

[5]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[6]  Hisashi Kado,et al.  MRI Prior Computation and Parallel Tempering Algorithm: A Probabilistic Resolution of the MEG/EEG Inverse Problem , 2004, Brain Topography.

[7]  Riitta Hari,et al.  Comparison of Minimum Current Estimate and Dipole Modeling in the Analysis of Simulated Activity in the Human Visual Cortices , 2002, NeuroImage.

[8]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[9]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[10]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[11]  Bhaskar D. Rao,et al.  Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization , 2006, NIPS.

[12]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[13]  Karl J. Friston,et al.  Systematic Regularization of Linear Inverse Solutions of the EEG Source Localization Problem , 2002, NeuroImage.

[14]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[15]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[16]  Jouko Lampinen,et al.  Bayesian analysis of the neuromagnetic inverse problem with ℓ p -norm priors , 2005, NeuroImage.

[17]  Sergey M. Plis,et al.  Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data , 2005, NeuroImage.

[18]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[19]  Chantal Delon-Martin,et al.  Temporal pattern of source activities evoked by different types of motion onset stimuli , 2006, NeuroImage.

[20]  Jouko Lampinen,et al.  Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods , 2007, NeuroImage.

[21]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[22]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[23]  Jouko Lampinen,et al.  Automatic relevance determination based hierarchical Bayesian MEG inversion in practice , 2007, NeuroImage.

[24]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[25]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[26]  Jouko Lampinen,et al.  Automatic fMRI‐guided MEG multidipole localization for visual responses , 2009, Human brain mapping.

[27]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[28]  John S George,et al.  Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis. , 2006, Physics in medicine and biology.

[29]  Ryoji Suzuki,et al.  A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms , 2001, IEEE Transactions on Biomedical Engineering.

[30]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[31]  Antti Honkela,et al.  Variational learning and bits-back coding: an information-theoretic view to Bayesian learning , 2004, IEEE Transactions on Neural Networks.

[32]  Karl J. Friston,et al.  Hemodynamic correlates of EEG: A heuristic , 2005, NeuroImage.

[33]  Matthew J. Beal,et al.  Graphical Models and Variational Methods , 2001 .

[34]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[35]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[36]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[37]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[38]  Chantal Delon-Martin,et al.  Timing of interactions across the visual field in the human cortex , 2004, NeuroImage.