A posteriori error estimation for elasto-plastic problems based on duality theory☆

Abstract In this paper we introduce a new approach to a posteriori error estimation for elasto-plastic problems based on the duality theory of the calculus of variations. We show that, in spite of the prevailing view, duality methods provide a viable way for obtaining computable a posteriori error estimates for nonlinear boundary value problems without directly solving the dual problem. Rigorous mathematical analysis leads to what we call duality error estimators consisting of two parts: the error in the constitutive law and the error in the equilibrium equations. This representation is both physically meaningful and computationally important. The duality error estimators hold for any conforming approximation of the exact solution regardless of whether or not they satisfy the Galerkin orthogonality condition. In particular, they encompass the familiar smoothening or gradient averaging techniques commonly used in practice. We prove that the duality error estimators are ‘equivalent to the error’ when the approximate solution is the exact solution of the discretised problem. Moreover, in the case of linear elasticity, the known residual type error estimators can be obtained from the duality error estimators. Numerical results for a model elasto-plastic problem show the accuracy of the duality error estimators.

[1]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[2]  Jean-Pierre Aubin,et al.  SOME ASPECTS OF THE METHOD OF THE HYPERCIRCLE APPLIED TO ELLIPTIC VARIATIONAL PROBLEMS. , 1969 .

[3]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[4]  Christoph Schwab,et al.  THE METHOD OF ARBITRARY LINES , 1991 .

[5]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[6]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[7]  John Argyris,et al.  A primer on superplasticity in natural formulation , 1984 .

[8]  Numerical analysis of nonsmooth variational problems of perfect plasticity , 1994 .

[9]  S. Repin,et al.  Error estimates for stresses in the finite element analysis of the two-dimensional elasto-plastic problems , 1995 .

[10]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value Problems , 1968 .

[11]  A. Arthurs Complementary Variational Principles , 1970 .

[12]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[13]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[14]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[15]  O. C. Holister,et al.  Stress Analysis , 1965 .

[16]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[17]  Ivo Babuška,et al.  Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .

[18]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[19]  S. Repin,et al.  A priori error estimates of variational-difference methods for Hencky plasticity problems , 1997 .

[20]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[21]  A. Nádai Plastic Behavior of Metals in the Strain‐Hardening Range. Part I , 1937 .

[22]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[23]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[24]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[25]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[26]  Ivo Babuška,et al.  Basic problems of a posteriori error estimation , 1992 .

[27]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[28]  Solomon G. Mikhlin,et al.  Error Analysis in Numerical Processes , 1991 .

[29]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[30]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[31]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[32]  Weimin Han A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations , 1994 .

[33]  G. Mitra Variational Inequalities and Complementarity Problems — Theory and Application , 1980 .

[34]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[35]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[36]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[37]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[38]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems , 1997 .

[39]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[40]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[41]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[42]  Robert V. Kohn,et al.  Dual spaces of stresses and strains, with applications to Hencky plasticity , 1983 .

[43]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[44]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[45]  Mariano Giaquinta,et al.  Existence of the displacements field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition , 1980 .

[46]  Ivo Babuška,et al.  The problem of the selection of an a posteriori error indicator based on smoothening techniques , 1993 .

[47]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[48]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .