The Solution of the Waterloo Problem

Abstract Let D(d, q) be a classical (ν, k, λ)-Singer difference set in a cyclic group G corresponding to the complement of the point-hyperplane design of PG(d, q) (d ⩾ 1). We characterize those Singer difference sets D(d, q) which admit a “Waterloo decomposition” D = A ∪ B such that (A − B) · (A − B)(−1) = k in Z G: Theorem. D(d, q) admits a Waterloo decomposition if and only if d is even.

[1]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[2]  Dieter Jungnickel On automorphism groups of divisible designs, II: Group invariant generalised conference matrices , 1990 .

[3]  J. J. Seidel,et al.  Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.

[4]  Richard A. Games The geometry of quadrics and correlations of sequences , 1986, IEEE Trans. Inf. Theory.

[5]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[6]  Ken W. Smith,et al.  Non-Abelian Hadamard Difference Sets , 1995, J. Comb. Theory, Ser. A.

[7]  Gerald Berman Families of generalized weighing matrices , 1978 .

[8]  Ming-Yuan Xia,et al.  Some Infinite Classes of Special Williamson Matrices and Difference Sets , 1992, J. Comb. Theory, Ser. A.

[9]  B. Gordon,et al.  Some New Difference Sets , 1962, Canadian Journal of Mathematics.

[10]  Loo Keng Hua,et al.  Introduction to number theory , 1982 .

[11]  Hanfried Lenz,et al.  Design theory , 1985 .

[12]  L. D. Baumert Cyclic Difference Sets , 1971 .

[13]  A. T. Butson,et al.  Relative difference sets , 1966 .

[14]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[15]  D. Jungnickel On Automorphism Groups of Divisible Designs , 1982, Canadian Journal of Mathematics.

[16]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[17]  Dieter Jungnickel,et al.  Relative difference sets with n = 2 , 1995, Discret. Math..