Integrated Sensing for IPMC Actuators Using Strain Gages for Underwater Applications

Ionic polymer-metal composite (IPMC) actuators have many advantages, for instance, they: 1) can be driven with low voltages (<;5 V); 2) are soft, flexible, and easily shaped; and 3) can operate in an aqueous environment (such as water). Important applications for IPMCs include active catheter devices for minimally invasive surgery, artificial muscles, and sensors and actuators for biorobotics. Due to inherent nonlinear behavior, dynamic effects, and external disturbances, sensing and feedback control are required for precision operation. A new method to sense the displacement of an IPMC actuator using resistive strain gages is proposed. The sensing scheme is low cost, practical, effective, and importantly, compact compared to existing methods such as lasers and charge-coupled device (CCD) cameras. The strain-to-displacement relationship is developed and experimental results are presented to demonstrate the effectiveness of the sensing scheme. Furthermore, the sensor signal is used as feedback information in a repetitive controller to improve the tracking of periodic motion. The stability condition for the controller is presented, and the sensing scheme and feedback control approach are applied to a fabricated perfluorinated ion-exchange-membrane-based IPMC actuator with lithium as its counterion. Experimental results show that the tracking error can be reduced by approximately 50% compared to PID control for tracking of periodic signals, including sinusoidal and triangular wave forms.

[1]  Won-jong Kim,et al.  Precision force and position control of an ionic polymer metal composite , 2004, Proceedings of the 2004 American Control Conference.

[2]  A. Menozzi,et al.  Open-Loop Control of a Multifin Biorobotic Rigid Underwater Vehicle , 2008, IEEE Journal of Oceanic Engineering.

[3]  Hui-Hung Lin,et al.  Control of Ionic Polymer-Metal Composites for Active Catheter Systems via Linear Parameter-Varying Approach , 2009 .

[4]  Xiaobo Tan,et al.  A nonlinear, control-oriented model for ionic polymer–metal composite actuators , 2009 .

[5]  W-J Kim,et al.  Precision force and position control of ionic polymer – metal composite , 2004 .

[6]  Martin Levesley,et al.  Vibration control of a flexible beam with integrated actuators and sensors , 2000 .

[7]  Shuxiang Guo,et al.  A New Jellyfish Type of Underwater Microrobot , 2007, 2007 International Conference on Mechatronics and Automation.

[8]  Xiaobo Tan,et al.  Integrated IPMC/PVDF sensory actuator and its validation in feedback control , 2008 .

[9]  Masayoshi Tomizuka,et al.  Digital Control Of Repetitive Errors In Disk Drive Systems , 1989, 1989 American Control Conference.

[10]  H. F. Brinson,et al.  Resistance-foil strain-gage technology as applied to composite materials , 1984 .

[11]  K. Kim,et al.  Ionic polymer–metal composites: II. Manufacturing techniques , 2003 .

[12]  E. Biddiss,et al.  Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. , 2006, Medical engineering & physics.

[13]  Charles T. Wu Transverse sensitivity of bonded strain gages , 1962 .

[14]  Shuxiang Guo,et al.  Underwater Swimming Micro Robot Using IPMC Actuator , 2006, 2006 International Conference on Mechatronics and Automation.

[15]  R. G. Molyet,et al.  A new approach to phase cancellation in repetitive control , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[16]  Andrew J. Fleming,et al.  Integrated strain and force feedback for high-performance control of piezoelectric actuators , 2010 .

[17]  Steven Dubowsky,et al.  DISPLACEMENTS IN A VIBRATING BODY BY STRAIN GAUGE MEASUREMENTS , 2000 .

[18]  Maarja Kruusmaa,et al.  A self-sensing ion conducting polymer metal composite (IPMC) actuator , 2007 .

[19]  Maurizio Porfiri,et al.  Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites , 2010, IEEE/ASME Transactions on Mechatronics.

[20]  Xiaobo Tan,et al.  A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators , 2008, IEEE/ASME Transactions on Mechatronics.

[21]  Chou-Ching K. Lin,et al.  A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems , 2007 .

[22]  Salvatore Graziani,et al.  Self-sensing ionic polymer–metal composite actuating device with patterned surface electrodes , 2009 .

[23]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[24]  H. Jin Kim,et al.  Robust control of ionic polymer?metal composites , 2007 .

[25]  Masaki Yamakita,et al.  Liquid environment-adaptive IPMC fish-like robot using extremum seeking feedback , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Youngsoo Jung,et al.  Sectored-electrode IPMC actuator for bending and twisting motion , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  George T.-C. Chiu,et al.  Spatially Periodic Disturbance Rejection With Spatially Sampled Robust Repetitive Control , 2008 .

[28]  Xiaobo Tan,et al.  Robust Adaptive Control of Conjugated Polymer Actuators , 2008, IEEE Transactions on Control Systems Technology.

[29]  Michio Nakano,et al.  High Accuracy Control of a Proton Synchrotron Magnet Power Supply , 1981 .

[30]  A. Galip Ulsoy,et al.  Precision measurement of tool-tip displacement using strain gages in precision flexible line boring , 1999 .

[31]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[32]  William M. Murray,et al.  The Bonded Electrical Resistance Strain Gage: An Introduction , 1992 .

[33]  Sia Nemat-Nassera,et al.  Micromechanics of actuation of ionic polymer-metal composites , 2014 .

[34]  K. Kim,et al.  Ionic polymer–metal composites: IV. Industrial and medical applications , 2005 .

[35]  Masayoshi Tomizuka,et al.  Zero Phase Error Tracking Algorithm for Digital Control , 1987 .

[36]  Woosoon Yim,et al.  Ionic Polymer-metal Composites for Underwater Operation , 2007 .

[37]  S. Hara,et al.  Repetitive control system: a new type servo system for periodic exogenous signals , 1988 .

[38]  Kinji Asaka,et al.  A snake-like swimming robot using IPMC actuator/sensor , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[39]  Kam K. Leang,et al.  Frequency-weighted feedforward control for dynamic compensation in ionic polymer–metal composite actuators , 2009 .

[40]  Xiaobo Tan,et al.  Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation , 2010 .

[41]  Xiaobo Tan,et al.  An Autonomous Robotic Fish for Mobile Sensing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  R. B. Watson,et al.  Bonded Electrical Resistance Strain Gages , 2008 .

[43]  Ajay Mahajan,et al.  Adaptive intelligent control of ionic polymer?metal composites , 2005 .

[44]  G. Wallace,et al.  Response Characterization of Electroactive Polymers as Mechanical Sensors , 2008, IEEE/ASME Transactions on Mechatronics.

[45]  Kyehan Rhee,et al.  Modeling of bending behavior of IPMC beams using concentrated ion boundary layer , 2009 .

[46]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[47]  Richard W. Longman,et al.  Disturbance rejection in repetitive controllers , 1992 .

[48]  Luigi Fortuna,et al.  A method to characterize the deformation of an IPMC sensing membrane , 2005 .

[49]  Per G. Reinhall,et al.  Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope , 2007 .

[50]  Paul Horowitz,et al.  The Art of Electronics - 2nd Edition , 1989 .