Surface activated room-temperature bonding in Ar gas ambient for MEMS encapsulation

Surface activated room-temperature bonding of Si and sapphire wafers in high purity inert gas was examined to package MEMS devices in various pressures. Si and sapphire wafers were successfully bonded in Ar gas ambience up to 90 kPa, almost the atmospheric pressure.

[1]  Svenja Knappe,et al.  MEMS Atomic Clocks , 2008 .

[2]  S. Yuasa,et al.  Three-dimensional integration technology of magnetic tunnel junctions for magnetoresistive random access memory application , 2017 .

[3]  A. Stathopoulos,et al.  Radiation damage in the cation sublattice of alpha-Al2O3 , 1983 .

[4]  K. Nordlund,et al.  Threshold defect production in silicon determined by density functional theory molecular dynamics simulations , 2008 .

[5]  Yoshitada Isono,et al.  Development of wafer-level-packaging technology for simultaneous sealing of accelerometer and gyroscope under different pressures , 2016 .

[6]  Tadatomo Suga,et al.  Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers , 2015 .

[7]  J. Loferski,et al.  Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds , 1958 .

[8]  F. Gruet,et al.  Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks , 2015 .

[9]  R. Chutani,et al.  Effects of getters on hermetically sealed micromachined cesium–neon cells for atomic clocks , 2013 .

[10]  M. Zickar,et al.  Wafer level hermetic package and device testing of a SOI-MEMS switch for biomedical applications , 2006 .

[11]  J. Cahn Irradiation Damage in Germanium and Silicon due to Electrons and Gamma Rays , 1959 .

[12]  J. Camparo,et al.  Alkali metal consumption by discharge lamps fabricated from GE-180 aluminosilicate glass , 2015, 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum.

[13]  P. Agnew Displacement thresholds in sapphire , 1992 .

[14]  Ryutaro Maeda,et al.  Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation , 2001 .

[15]  T. Suga,et al.  Effect of Surface Roughness on Room-Temperature Wafer Bonding by Ar Beam Surface Activation , 1998 .

[16]  T. Suga,et al.  Room-temperature direct bonding of germanium wafers by surface-activated bonding method , 2015 .

[17]  P. Hemment,et al.  Study of the Anisotropy of Radiation Damage Rates in n‐Type Silicon , 1969 .

[18]  C. Gorecki,et al.  Coherent population trapping resonances in Cs–Ne vapor microcells for miniature clocks applications , 2011 .

[19]  J. Plummer,et al.  Characterization of cesium diffusion in silicon dioxide films using backscattering spectrometry , 1987 .

[20]  M. Esashi,et al.  Wafer level packaging of MEMS , 2008, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[21]  J. Kitching,et al.  Low helium permeation cells for atomic microsystems technology. , 2016, Optics letters.

[22]  N. Najafi,et al.  An all-glass chip-scale MEMS package with variable cavity pressure , 2006 .

[23]  Tadatomo Suga,et al.  1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature , 1998 .

[24]  D. Hand,et al.  Hermetic glass frit packaging in air and vacuum with localized laser joining , 2011 .

[25]  Koichi Imanaka,et al.  Development of a large-force low-loss metal-contact RF MEMS switch , 2006 .

[26]  Ryutaro Maeda,et al.  Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method , 1998 .

[27]  R. Maeda,et al.  Aligned room-temperature bonding of silicon wafers in vacuum by argon beam surface activation , 2005 .

[28]  Lifetime improvement of micro-fabricated alkali vapor cells by atomic layer deposited wall coatings , 2013 .

[29]  S. E. Alper,et al.  A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process , 2015 .

[30]  Ryutaro Maeda,et al.  Direct bonding of two crystal substrates at room temperature by Ar-beam surface activation , 2006 .

[31]  Ryutaro Maeda,et al.  Surface activated bonding of silicon wafers at room temperature , 1996 .

[32]  Ryutaro Maeda,et al.  Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature , 2003 .

[33]  Takao Abe,et al.  Dislocation-Free Silicon on Sapphire by Wafer Bonding , 1994 .

[34]  Ryutaro Maeda,et al.  Room-Temperature Bonding of Si Wafers to Pt Films on SiO2 or LiNbO3 Substrates Using Ar-Beam Surface Activation , 1999 .

[35]  T. Ishihara,et al.  Sapphire-based capacitance diaphragm gauge for high temperature applications , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[36]  T. Suga,et al.  Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation , 1999 .

[37]  Svenja Knappe,et al.  Miniature vapor-cell atomic-frequency references , 2002 .

[38]  Q.-Y. Tong,et al.  Wafer Bonding and Layer Splitting for Microsystems , 1999 .

[39]  Z. Wang,et al.  Effect of buffer gas ratios on the relationship between cell temperature and frequency shifts of the coherent population trapping resonance , 2008 .

[40]  Y. Kurashima,et al.  Room temperature wafer direct bonding of smooth Si surfaces recovered by Ne beam surface treatments , 2013 .

[41]  W. Maszara,et al.  Bonding of silicon wafers for silicon‐on‐insulator , 1988 .

[42]  Ryutaro Maeda,et al.  Transmission Electron Microscope Observations of Si/Si Interface Bonded at Room Temperature by Ar Beam Surface Activation , 1999 .

[43]  Michael Kraft,et al.  Modelling squeeze film effects in a MEMS accelerometer with a levitated proof mass , 2005 .

[44]  Steven J. Zinkle,et al.  Radiation effects in ceramics , 1994 .

[45]  H. Okada,et al.  Room temperature vacuum sealing using surface activated bonding method , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).