SPICA, a new 6T visible beam combiner for CHARA: science, design and interfaces

We present the recent developments preparing the construction of a new visible 6T beam combiner for the CHARA Array, called SPICA. This instrument is designed to achieve a large survey of stellar parameters and to image surface of stars. We first detail the science justification and the general idea governing the establishment of the sample of stars and the main guidance for the optimization of the observations. After a description of the concept of the instrument, we focus our attention on the first important aspect: optimizing and stabilizing the injection of light into single mode fibers in the visible under partial adaptive optics correction. Then we present the main requirements and the preliminary design of a 6T-ABCD integrated optics phase sensor in the H-band to achieve long exposures and reach fainter magnitudes in the visible.

[1]  G. Perrin,et al.  Asteroseismology and interferometry , 2007, 0709.4613.

[2]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[3]  John D. Monnier,et al.  The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results , 2014, Astronomical Telescopes and Instrumentation.

[4]  Christophe Dupuy,et al.  NAOMI: a new adaptive optics module for interferometry , 2014, Astronomical Telescopes and Instrumentation.

[5]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[6]  D. Pollacco,et al.  The PLATO mission , 2010, Proceedings of the International Astronomical Union.

[7]  D. Graczyk,et al.  Improving the surface brightness-color relation for early-type stars using optical interferometry , 2014, 1409.1351.

[8]  Olivier Chesneau,et al.  The JMMC Stellar Diameters Catalog v2 (JSDC): A New Release Based on SearchCal Improvements , 2014 .

[9]  Xiao Che,et al.  CHARA array adaptive optics II: non-common-path correction and downstream optics , 2014, Astronomical Telescopes and Instrumentation.

[10]  M. A. Martinod,et al.  Long baseline interferometry in the visible: first results of the FRIEND project , 2016, Astronomical Telescopes + Instrumentation.

[11]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[12]  Karine Perraut,et al.  Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters , 2015, 1511.03197.

[13]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[14]  G. Duvert,et al.  VizieR Online Data Catalog: JMDC : JMMC Measured Stellar Diameters Catalogue (Duvert, 2016) , 2016 .

[15]  Kaspar von Braun,et al.  DIRECTLY DETERMINED LINEAR RADII AND EFFECTIVE TEMPERATURES OF EXOPLANET HOST STARS , 2009, 0901.1206.

[16]  G. Benedetto,et al.  Predicting accurate stellar angular diameters by the near-infrared surface brightness technique , 2005 .

[17]  Karine Perraut,et al.  SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  A. Baglin,et al.  The COROT Mission and its Seismology Programme , 2002 .

[19]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[20]  H. Bruntt,et al.  Asteroseismology with the WIRE satellite , 2007, astro-ph/0702014.

[21]  M Shao,et al.  First fringe measurements with a phase-tracking stellar interferometer. , 1980, Applied optics.

[22]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[23]  N. Nardetto Pulsating stars and eclipsing binaries as distances indicators in the universe , 2018 .

[24]  F Roddier,et al.  Long-baseline Michelson interferometry with large ground-based telescopes operating at optical wavelengths. I. General formalism. Interferometry at visible wavelengths , 1984 .

[25]  Olivier Chesneau,et al.  Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars , 2016, 1604.07700.

[26]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[27]  James H. Clark,et al.  Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer , 2016, 1601.00036.

[28]  Debra A. Fischer,et al.  Stellar diameters and temperatures - VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs , 2014, 1411.5638.

[29]  Antoine Labeyrie,et al.  Interference fringes obtained on VEGA with two optical telescopes , 1975 .

[30]  I. Tallon-Bosc,et al.  Flattening and surface-brightness of the fast-rotating star δ Persei with the visible VEGA/CHARA interferometer , 2017 .

[31]  T. M. Brown,et al.  THE COMPLEMENTARY ROLES OF INTERFEROMETRY AND ASTEROSEISMOLOGY IN DETERMINING THE MASS OF SOLAR-TYPE STARS , 2007 .

[32]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[33]  P. Feautrier,et al.  Long baseline interferometry in the visible: the FRIEND project , 2014, Astronomical Telescopes and Instrumentation.

[34]  Romain G. Petrov,et al.  Hierarchical fringe tracker to co-phase and coherence very large optical interferometers , 2016, Astronomical Telescopes + Instrumentation.

[35]  Guy Perrin,et al.  Comparison of fringe-tracking algorithms for single-mode near-infrared long-baseline interferometers , 2014 .

[36]  Isabelle Tallon-Bosc,et al.  Estimation of visibility amplitude by optical long-baseline Michelson interferometry with large apertures , 1994 .

[37]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[38]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[39]  Denis Mourard,et al.  Theoretical impact of fast rotation on calibrating the surface brightness-color relation for early-type stars , 2015 .

[40]  Gordon A. H. Walker,et al.  Ultraprecise photometry from space: simulations of the MOST space telescope performance. , 1999 .

[41]  Wesley A. Traub,et al.  FLUOR fibered instrument at the IOTA interferometer , 1998, Astronomical Telescopes and Instrumentation.

[42]  John D. Monnier,et al.  Tracking faint fringes with the CHARA-Michigan Phasetracker (CHAMP) , 2012, Other Conferences.

[43]  I. Ribas,et al.  The distance to the Andromeda galaxy from eclipsing binaries , 2009, 0911.3391.

[44]  John D. Monnier,et al.  Spatio-spectral encoding of fringes in optical long-baseline interferometry - Example of the 3T and 4T recombining mode of VEGA/CHARA , 2011 .