Implicit reduced Vlasov-Fokker-Planck-Maxwell model based on high-order mixed elements

[1]  Stefano Zampini,et al.  MFEM: a modular finite element methods library , 2019, Comput. Math. Appl..

[2]  J. Nikl,et al.  The effect of pre-plasma formed under the nonlocal transport conditions on the interaction of the ultrahigh intensity laser with a solid target , 2019, Optics + Optoelectronics.

[3]  S. Weber,et al.  Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation , 2018 .

[4]  V. Tikhonchuk Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion , 2018, Nuclear Fusion.

[5]  S. Weber,et al.  The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction , 2018 .

[6]  S. Weber,et al.  Nonlocal transport hydrodynamic model for laser heated plasmas , 2018 .

[7]  Naofumi Ohnishi,et al.  Quadratic conservative scheme for relativistic Vlasov-Maxwell system , 2018, J. Comput. Phys..

[8]  M. Sherlock,et al.  A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion , 2017 .

[9]  D. Coster,et al.  Kinetic simulations of electron heat flux in the scrape-off layer , 2017 .

[10]  Mehul V. Patel,et al.  Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications , 2017, 1704.08963.

[11]  C. Ridgers,et al.  Kinetic modeling of Nernst effect in magnetized hohlraums. , 2016, Physical review. E.

[12]  T. M. Tran,et al.  Vlasov Simulations of Electron-Ion Collision Effects on Damping of Electron Plasma Waves , 2016, 1601.01002.

[13]  Luis Chacón,et al.  A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..

[14]  M. Olazabal-Loumé,et al.  Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas , 2015 .

[15]  Luis Chacón,et al.  A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..

[16]  Luis Chacón,et al.  Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects , 2015, J. Comput. Phys..

[17]  Hailiang Liu,et al.  Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..

[18]  S. Atzeni,et al.  Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets , 2014 .

[19]  B. Williams,et al.  Hybrid simulations of fast electron propagation including magnetized transport and non-local effects in the background plasma , 2013 .

[20]  Erwin Laure,et al.  The Fluid-Kinetic Particle-in-Cell method for plasma simulations , 2013, J. Comput. Phys..

[21]  Vladimir T. Tikhonchuk,et al.  Comparison for non-local hydrodynamic thermal conduction models , 2013 .

[22]  O. Larroche,et al.  Ion Fokker-Planck simulation of D-3He gas target implosions , 2012 .

[23]  Mark Sherlock,et al.  A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma , 2012, J. Comput. Phys..

[24]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[25]  P. A. Norreys,et al.  A Vlasov-Fokker-Planck code for high energy density physics , 2011, J. Comput. Phys..

[26]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[27]  Anders Persson,et al.  Effects of laser prepulses on laser-induced proton generation , 2010 .

[28]  R R Freeman,et al.  Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. , 2010, Physical review letters.

[29]  T. D. Arber,et al.  VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..

[30]  Christopher Ridgers,et al.  Rapid self-magnetization of laser speckles in plasmas by nonlinear anisotropic instability , 2009 .

[31]  R J Kingham,et al.  Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. , 2008, Physical review letters.

[32]  J.-L. Feugeas,et al.  A practical nonlocal model for heat transport in magnetized laser plasmas , 2006 .

[33]  Wojciech Rozmus,et al.  Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation , 2006 .

[34]  G. Rodrigue,et al.  High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.

[35]  A. R. Bell,et al.  An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .

[36]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[37]  A. Bell,et al.  Nonlocal magnetic-field generation in plasmas without density gradients. , 2002, Physical review letters.

[38]  H. Takabe Astrophysics with Intense and Ultra-Intense Lasers “Laser Astrophysics” , 2001 .

[39]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[40]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[41]  W. Rozmus,et al.  Nonlocal plasma electron hydrodynamics , 1996 .

[42]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[43]  Ladislav Drska,et al.  Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas , 1994 .

[44]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[45]  A. R. Bell,et al.  A code for the solution of the Vlasov-Fokker-Planck equation in 1-D or 2-D , 1988 .

[46]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[47]  E. M. Epperlein,et al.  Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation , 1986 .

[48]  M G Haines,et al.  A comparison of the kinetic and 2 electron fluid models of the collisional Weibel instability in , 1985 .

[49]  Haines,et al.  Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas. , 1985, Physical review letters.

[50]  Kho Th,et al.  Relaxation of a system of charged particles. , 1985 .

[51]  J. Virmont,et al.  Electron heat transport down steep temperature gradients , 1982 .

[52]  R. G. Evans,et al.  Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .

[53]  A. B. Langdon,et al.  Conservative differencing of the electron Fokker-Planck transport equation , 1981 .

[54]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[55]  J. Stamper,et al.  Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation. Interim report , 1978 .

[56]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[57]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[58]  T. Johnston,et al.  Cartesian Tensor Scalar Product and Spherical Harmonic Expansions in Boltzmann's Equation , 1960 .

[59]  W. B. Thompson Transport Processes in the Plasma , 1960 .

[60]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[61]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[62]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[63]  Hailiang Liu,et al.  THIRD ORDER MAXIMUM-PRINCIPLE-SATISFYING DG SCHEMES Third Order Maximum-Principle-Satisfying DG schemes for Convection-Diffusion problems with Anisotropic Diffusivity DIFFUSIVITY , 2019, arXiv.org.

[64]  D. Arnold Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .

[65]  I. Smurov,et al.  Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer , 2005 .

[66]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .