Implicit reduced Vlasov-Fokker-Planck-Maxwell model based on high-order mixed elements
暂无分享,去创建一个
Michael Bussmann | Milan Kucharik | Jan Nikl | Ilja Göthel | Stefan Weber | M. Bussmann | S. Weber | M. Kucharik | J. Nikl | Ilja Göthel
[1] Stefano Zampini,et al. MFEM: a modular finite element methods library , 2019, Comput. Math. Appl..
[2] J. Nikl,et al. The effect of pre-plasma formed under the nonlocal transport conditions on the interaction of the ultrahigh intensity laser with a solid target , 2019, Optics + Optoelectronics.
[3] S. Weber,et al. Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation , 2018 .
[4] V. Tikhonchuk. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion , 2018, Nuclear Fusion.
[5] S. Weber,et al. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction , 2018 .
[6] S. Weber,et al. Nonlocal transport hydrodynamic model for laser heated plasmas , 2018 .
[7] Naofumi Ohnishi,et al. Quadratic conservative scheme for relativistic Vlasov-Maxwell system , 2018, J. Comput. Phys..
[8] M. Sherlock,et al. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion , 2017 .
[9] D. Coster,et al. Kinetic simulations of electron heat flux in the scrape-off layer , 2017 .
[10] Mehul V. Patel,et al. Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications , 2017, 1704.08963.
[11] C. Ridgers,et al. Kinetic modeling of Nernst effect in magnetized hohlraums. , 2016, Physical review. E.
[12] T. M. Tran,et al. Vlasov Simulations of Electron-Ion Collision Effects on Damping of Electron Plasma Waves , 2016, 1601.01002.
[13] Luis Chacón,et al. A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..
[14] M. Olazabal-Loumé,et al. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas , 2015 .
[15] Luis Chacón,et al. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..
[16] Luis Chacón,et al. Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects , 2015, J. Comput. Phys..
[17] Hailiang Liu,et al. Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..
[18] S. Atzeni,et al. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets , 2014 .
[19] B. Williams,et al. Hybrid simulations of fast electron propagation including magnetized transport and non-local effects in the background plasma , 2013 .
[20] Erwin Laure,et al. The Fluid-Kinetic Particle-in-Cell method for plasma simulations , 2013, J. Comput. Phys..
[21] Vladimir T. Tikhonchuk,et al. Comparison for non-local hydrodynamic thermal conduction models , 2013 .
[22] O. Larroche,et al. Ion Fokker-Planck simulation of D-3He gas target implosions , 2012 .
[23] Mark Sherlock,et al. A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma , 2012, J. Comput. Phys..
[24] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[25] P. A. Norreys,et al. A Vlasov-Fokker-Planck code for high energy density physics , 2011, J. Comput. Phys..
[26] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[27] Anders Persson,et al. Effects of laser prepulses on laser-induced proton generation , 2010 .
[28] R R Freeman,et al. Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. , 2010, Physical review letters.
[29] T. D. Arber,et al. VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..
[30] Christopher Ridgers,et al. Rapid self-magnetization of laser speckles in plasmas by nonlinear anisotropic instability , 2009 .
[31] R J Kingham,et al. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. , 2008, Physical review letters.
[32] J.-L. Feugeas,et al. A practical nonlocal model for heat transport in magnetized laser plasmas , 2006 .
[33] Wojciech Rozmus,et al. Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation , 2006 .
[34] G. Rodrigue,et al. High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.
[35] A. R. Bell,et al. An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .
[36] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[37] A. Bell,et al. Nonlocal magnetic-field generation in plasmas without density gradients. , 2002, Physical review letters.
[38] H. Takabe. Astrophysics with Intense and Ultra-Intense Lasers “Laser Astrophysics” , 2001 .
[39] D. A. Knoll,et al. An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .
[40] Edmond Chow,et al. A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[41] W. Rozmus,et al. Nonlocal plasma electron hydrodynamics , 1996 .
[42] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[43] Ladislav Drska,et al. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas , 1994 .
[44] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[45] A. R. Bell,et al. A code for the solution of the Vlasov-Fokker-Planck equation in 1-D or 2-D , 1988 .
[46] I Babuska,et al. The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .
[47] E. M. Epperlein,et al. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation , 1986 .
[48] M G Haines,et al. A comparison of the kinetic and 2 electron fluid models of the collisional Weibel instability in , 1985 .
[49] Haines,et al. Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas. , 1985, Physical review letters.
[50] Kho Th,et al. Relaxation of a system of charged particles. , 1985 .
[51] J. Virmont,et al. Electron heat transport down steep temperature gradients , 1982 .
[52] R. G. Evans,et al. Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .
[53] A. B. Langdon,et al. Conservative differencing of the electron Fokker-Planck transport equation , 1981 .
[54] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[55] J. Stamper,et al. Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation. Interim report , 1978 .
[56] Robert L. McCrory,et al. Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .
[57] J. S. Chang,et al. A practical difference scheme for Fokker-Planck equations☆ , 1970 .
[58] T. Johnston,et al. Cartesian Tensor Scalar Product and Spherical Harmonic Expansions in Boltzmann's Equation , 1960 .
[59] W. B. Thompson. Transport Processes in the Plasma , 1960 .
[60] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[61] L. Spitzer,et al. TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .
[62] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[63] Hailiang Liu,et al. THIRD ORDER MAXIMUM-PRINCIPLE-SATISFYING DG SCHEMES Third Order Maximum-Principle-Satisfying DG schemes for Convection-Diffusion problems with Anisotropic Diffusivity DIFFUSIVITY , 2019, arXiv.org.
[64] D. Arnold. Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .
[65] I. Smurov,et al. Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer , 2005 .
[66] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .