Numerical simulation of convective heat transfer for inline and stagger stacked plain-weave wire mesh screens and comparison with a local thermal non-equilibrium model

Volumetric receivers made of metallic wire meshes are a promising technology that allows different designs and configurations. In this paper the local volumetric heat transfer coefficient for a volumetric absorber with two extreme arrangements, inline and stagger, is presented. The results show that the heat transfer rates for the stagger stack is nearly two times higher than the inline stack. Moreover, the local volumetric heat transfer coefficient is implemented in a Homogeneous Equivalent Model using a Local Thermal Non-Equilibrium model to compare the results. The stagger stack performs better than the inline stack despite their higher frontal losses and pressure drop. Finally, a validation of the Homogeneous Equivalent Model is carried out with experimental data showing a good agreement.

[1]  Bo Liu,et al.  Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer , 2016 .

[2]  Michael F. Modest,et al.  CHAPTER 22 – INVERSE RADIATIVE HEAT TRANSFER , 2003 .

[3]  D. Patiño,et al.  CFD simulation of a solar radiation absorber , 2013 .

[4]  Abraham Kribus,et al.  The promise and challenge of solar volumetric absorbers , 2014 .

[5]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[6]  G. Flamant,et al.  Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances , 2011 .

[7]  A. Kribus,et al.  Optimization of High Temperature SiC Volumetric Solar Absorber , 2014 .

[8]  J. Gore,et al.  Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics , 1998 .

[9]  Robert Pitz-Paal,et al.  Numerical models of advanced ceramic absorbers for volumetric solar receivers , 2016 .

[10]  Zenghui Zhao,et al.  Properties of plain weave metallic wire mesh screens , 2013 .

[11]  Jun Xu,et al.  In-plane effective thermal conductivity of plain-weave screen laminates , 2002 .

[12]  A. Steinfeld,et al.  Tomography based determination of permeability, Dupuit–Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics , 2008 .

[13]  R. Viskanta,et al.  Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam , 1993 .

[14]  Antonio L. Avila-Marin,et al.  Experimental Results of Gradual Porosity Wire Mesh Absorber for Volumetric Receivers , 2014 .

[15]  R. R. Eaton,et al.  Multiphase transport in porous media , 1988 .

[16]  M. Kaviany,et al.  Principles of Heat Transfer , 2001 .

[17]  Richard A. Wirtz,et al.  Thermal/fluid characteristics of isotropic plain-weave screen laminates as heat exchange surfaces , 2002 .

[18]  K. Vafai Handbook of porous media , 2015 .

[19]  William G. Gray,et al.  Multiscale modeling of porous medium systems , 2015 .

[20]  G. Flamant,et al.  Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers , 2011 .