Dose-Response Analysis Using R

Dose-response analysis can be carried out using multi-purpose commercial statistical software, but except for a few special cases the analysis easily becomes cumbersome as relevant, non-standard output requires manual programming. The extension package drc for the statistical environment R provides a flexible and versatile infrastructure for dose-response analyses in general. The present version of the package, reflecting extensions and modifications over the last decade, provides a user-friendly interface to specify the model assumptions about the dose-response relationship and comes with a number of extractors for summarizing fitted models and carrying out inference on derived parameters. The aim of the present paper is to provide an overview of state-of-the-art dose-response analysis, both in terms of general concepts that have evolved and matured over the years and by means of concrete examples.

[1]  Christian Ritz,et al.  Simultaneous Inference for Model Averaging of Derived Parameters , 2015, Risk analysis : an official publication of the Society for Risk Analysis.

[2]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[3]  J. Lewis,et al.  Probit Analysis (3rd ed). , 1972 .

[4]  Christian Ritz,et al.  Nonlinear Regression Analysis of Herbicide Absorption Studies , 2011, Weed Science.

[5]  Henrik Spliid,et al.  Continuous Ecotoxicological Data Evaluated Relative to a Control Response , 1998 .

[6]  D. Normolle,et al.  An algorithm for robust non-linear analysis of radioimmunoassays and other bioassays. , 1993, Statistics in medicine.

[7]  Christian Ritz,et al.  Improved empirical models describing hormesis , 2005, Environmental toxicology and chemistry.

[8]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[9]  A. Stromberg Computation of high breakdown nonlinear regression parameters , 1993 .

[10]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[11]  W. Wien,et al.  Object-oriented Computation of Sandwich Estimators , 2006 .

[12]  A. John Bailer,et al.  Comparing model averaging with other model selection strategies for benchmark dose estimation , 2009, Environmental and Ecological Statistics.

[13]  Daniel Gerhard,et al.  A Unified Framework for Benchmark Dose Estimation Applied to Mixed Models and Model Averaging , 2013 .

[14]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[15]  Douglas M. Bates,et al.  LINEAR AND NONLINEAR MIXED-EFFECTS MODELS , 1998 .

[16]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[17]  Christian Andreasen,et al.  The Effect of Fertilizer Level and Foliar-applied Calcium on Seed Production and Germination of Gerbera hybrida , 2014 .

[18]  Roger D. Cousens,et al.  An equation to describe dose responses where there is stimulation of growth at low doses , 1989 .

[19]  Geoffrey A Head,et al.  A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[20]  Jens C. Streibig,et al.  Detecting ALS and ACCase herbicide tolerant accession of Echinochloa oryzoides (Ard.) Fritsch. in rice (Oryza sativa L.) fields , 2014 .

[21]  Annette Kopp-Schneider,et al.  The impact of data transformations on concentration-response modeling. , 2012, Toxicology letters.

[22]  Daniel Gerhard,et al.  Marginalization in nonlinear mixed-effects models with an application to dose-response analysis , 2017, 1707.02502.

[23]  J. Streibig,et al.  Linking fluorescence induction curve and biomass in herbicide screening. , 2003, Pest management science.

[24]  K. Martín-Betancor,et al.  Defining an additivity framework for mixture research in inducible whole-cell biosensors , 2015, Scientific Reports.

[25]  Cécile Cornou,et al.  A ring test of a wireless in vitro gas production system , 2013 .

[26]  R L Kodell,et al.  Incorporating model uncertainties along with data uncertainties in microbial risk assessment. , 2000, Regulatory toxicology and pharmacology : RTP.

[27]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[28]  Harvey J. Motulsky,et al.  Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate , 2006, BMC Bioinformatics.

[29]  Johannes Ranke,et al.  Fitting dose-response curves from bioassays and toxicity testing , 2017 .

[30]  Frank Bretz,et al.  MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies , 2009 .

[31]  Jens C. Streibig,et al.  Bioassay analysis using R , 2005 .

[32]  Hans-Peter Piepho,et al.  Statistical modeling of the hormetic dose zone and the toxic potency completes the quantitative description of hormetic dose responses , 2015, Environmental toxicology and chemistry.

[33]  Achim Zeileis,et al.  Diagnostic Checking in Regression Relationships , 2015 .

[34]  D Copplestone,et al.  A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances , 2010, Journal of radiological protection : official journal of the Society for Radiological Protection.

[35]  Christian Ritz,et al.  Analysis of germination data from agricultural experiments , 2013 .

[36]  Marie Laure Delignette-Muller,et al.  A Toolbox for Nonlinear Regression in R: The Package nlstools , 2015 .

[37]  John C. Nash,et al.  On Best Practice Optimization Methods in R , 2014 .

[38]  Christel Faes,et al.  Model Averaging in Microbial Risk Assessment Using Fractional Polynomials , 2008, Risk analysis : an official publication of the Society for Risk Analysis.

[39]  D. J. Finney Bioassay and the practice of statistical inference , 1979 .

[40]  D. Ruppert,et al.  Random-Effect Models in Nonlinear Regression with Applications to Bioassay , 1989 .

[41]  J. C. Streibig,et al.  A Method for Determining the Biological Effect of Herbicide Mixtures , 1981, Weed Science.

[42]  J. A. Branco,et al.  Models for the estimation of a ‘no effect concentration’ , 2002 .

[43]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[44]  Frank Bretz,et al.  Model‐based dose finding under model uncertainty using general parametric models , 2013, Statistics in medicine.

[45]  Christian Ritz,et al.  Toward a unified approach to dose–response modeling in ecotoxicology , 2010, Environmental toxicology and chemistry.

[46]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[47]  Christian Ritz,et al.  Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests , 2009, Environmental toxicology and chemistry.

[48]  J. Ludwig,et al.  grofit: Fitting Biological Growth Curves with R , 2010 .

[49]  David Ruppert,et al.  Power Transformations When Fitting Theoretical Models to Data , 1984 .

[50]  Christian Ritz,et al.  Relative potency in nonsimilar dose–response curves , 2006, Weed Science.

[51]  J. Streibig,et al.  A general joint action model for herbicide mixtures , 1998 .