Wavelet-Based Dynamic Texture Classification Using Gumbel Distribution

Dynamic texture classification has attracted growing attention. Characterization of a dynamic texture is vital to address the classification problem. This paper proposes a dynamic texture descriptor based on the dual-tree complex wavelet transform and the Gumbel distribution. The method takes out the median values of coefficient magnitudes in each nonoverlapping block of a detail subband and models them with the Gumbel distribution. The classification is realized by comparing the similarity between the estimated distributions of all detail subbands. The experimental results on the benchmark dynamic texture database demonstrate better histogram fitting and promising classification performance of the dynamic texture descriptor compared with the current existing methods.