Oscillating singularities on cantor sets: A grand-canonical multifractal formalism

The singular behavior of functions is generally characterized by their Hölder exponent. However, we show that this exponent poorly characterizes oscillating singularities. We thus introduce a second exponent that accounts for the oscillations of a singular behavior and we give a characterization of this exponent using the wavelet transform. We then elaborate on a “grand-canonical” multifractal formalism that describes statistically the fluctuations of both the Hölder and the oscillation exponents. We prove that this formalism allows us to recover the generalized singularity spectrum of a large class of fractal functions involving oscillating singularities.

[1]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[2]  R. Benzi,et al.  Wavelet analysis of a Gaussian Kolmogorov signal , 1993 .

[3]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[4]  P. Tchamitchian,et al.  Regularite locale de la fonction “non-differentiable” de Riemann , 1990 .

[5]  Pierre Collet,et al.  The dimension spectrum of some dynamical systems , 1987 .

[6]  E. Bacry,et al.  Characterizing long-range correlations in DNA sequences from wavelet analysis. , 1995, Physical review letters.

[7]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[8]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  E. Bacry,et al.  Solving the Inverse Fractal Problem from Wavelet Analysis , 1994 .

[10]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Yves Meyer,et al.  Wavelets and Applications , 1992 .

[14]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[15]  Pierre Gilles Lemarié,et al.  Les Ondelettes en 1989 , 1990 .

[16]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[17]  U. Frisch,et al.  Wavelet transforms of self-similar processes , 1991 .

[18]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[19]  Andreas Rieder,et al.  Wavelets: Theory and Applications , 1997 .

[20]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[21]  E. Bacry,et al.  BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES , 1993 .

[22]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[23]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[24]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[25]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[26]  D. Rand The singularity spectrum f (α) for cookie-cutters , 1989 .

[27]  E. Bacry,et al.  Wavelet analysis of fully developed turbulence data and measurement of scaling exponents , 1991 .

[28]  M. Holschneider On the wavelet transformation of fractal objects , 1988 .

[29]  B. Hao,et al.  Directions in chaos , 1987 .

[30]  Bacry,et al.  Oscillating singularities in locally self-similar functions. , 1995, Physical review letters.

[31]  T. Vicsek,et al.  Fractals in natural sciences , 1994 .

[32]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[33]  Benoit B. Mandelbrot,et al.  Fractals in physics : essays in honour of Benoit B. Mandelbrot : proceedings of the international conference honouring Benoit B. Mandelbrot on his 65th birthday, Vence, France, 1-4 October, 1989 , 1990 .

[34]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[35]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[36]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[37]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[38]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[39]  Yves Meyer,et al.  Progress in wavelet analysis and applications , 1993 .