A spectrum of modularity in multi‐functional gene circuits

A major challenge in systems biology is to understand the relationship between a circuit's structure and its function, but how is this relationship affected if the circuit must perform multiple distinct functions within the same organism? In particular, to what extent do multi‐functional circuits contain modules which reflect the different functions? Here, we computationally survey a range of bi‐functional circuits which show no simple structural modularity: They can switch between two qualitatively distinct functions, while both functions depend on all genes of the circuit. Our analysis reveals two distinct classes: hybrid circuits which overlay two simpler mono‐functional sub‐circuits within their circuitry, and emergent circuits, which do not. In this second class, the bi‐functionality emerges from more complex designs which are not fully decomposable into distinct modules and are consequently less intuitive to predict or understand. These non‐intuitive emergent circuits are just as robust as their hybrid counterparts, and we therefore suggest that the common bias toward studying modular systems may hinder our understanding of real biological circuits.

[1]  U. Alon,et al.  Detailed map of a cis-regulatory input function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[3]  Anton Crombach,et al.  Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression , 2016, bioRxiv.

[4]  D. Thieffry,et al.  Modularity in development and evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  Robert N. Brandon,et al.  The Units of Selection Revisited: The Modules of Selection , 1999 .

[6]  M. Ibañes,et al.  Diffusible ligand and lateral inhibition dynamics for pattern formation , 2009 .

[7]  David H. Sharp,et al.  Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors , 2009, PLoS Comput. Biol..

[8]  E. Plahte Pattern formation in discrete cell lattices , 2001, Journal of mathematical biology.

[9]  H. Meinhardt Models of biological pattern formation , 1982 .

[10]  Constance Jeffery,et al.  Moonlighting proteins , 2010, Genome Biology.

[11]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[12]  E. Davidson Emerging properties of animal gene regulatory networks , 2010, Nature.

[13]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Wray,et al.  The g‐value paradox , 2002, Evolution & development.

[15]  T. L. Jacobsen,et al.  Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. , 1997, Development.

[16]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[17]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[18]  E. Nishida,et al.  Synthetic lateral inhibition governs cell-type bifurcation with robust ratios , 2015, Nature Communications.

[19]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[20]  Julian Lewis,et al.  Neurogenic genes and vertebrate neurogenesis , 1996, Current Opinion in Neurobiology.

[21]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[22]  Joshua L. Payne,et al.  Constraint and Contingency in Multifunctional Gene Regulatory Circuits , 2013, PLoS Comput. Biol..

[23]  Miki Ebisuya,et al.  Synthetic Signal Propagation Through Direct Cell-Cell Interaction , 2012, Science Signaling.

[24]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[25]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[26]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  J. M. Sancho,et al.  Pattern selection by dynamical biochemical signals. , 2015, Biophysical journal.

[28]  R. Solé,et al.  Gene networks capable of pattern formation: from induction to reaction-diffusion. , 2000, Journal of theoretical biology.

[29]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[30]  James Sharpe,et al.  A unified design space of synthetic stripe-forming networks , 2014, Nature Communications.

[31]  Francis Corson,et al.  Geometry, epistasis, and developmental patterning , 2012, Proceedings of the National Academy of Sciences.

[32]  Javier Macía,et al.  Specialized or flexible feed-forward loop motifs: a question of topology , 2009, BMC Systems Biology.

[33]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[34]  Anton Crombach,et al.  Classification of transient behaviours in a time-dependent toggle switch model , 2014, BMC Systems Biology.

[35]  Jean-Baptiste Mouret,et al.  Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills , 2015, PLoS Comput. Biol..

[36]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[37]  J. Sharpe,et al.  Dynamics of gene circuits shapes evolvability , 2015, Proceedings of the National Academy of Sciences.

[38]  Yasuhiro Nakai,et al.  Waves of differentiation in the fly visual system. , 2013, Developmental biology.

[39]  J. Mattick,et al.  A global view of genomic information--moving beyond the gene and the master regulator. , 2010, Trends in genetics : TIG.

[40]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[41]  A. Wagner,et al.  Multifunctionality and robustness trade-offs in model genetic circuits. , 2008, Biophysical journal.

[42]  Eric H Davidson,et al.  Modeling the dynamics of transcriptional gene regulatory networks for animal development. , 2009, Developmental biology.

[43]  C. Lavazec,et al.  Expression switching in the stevor and Pfmc‐2TM superfamilies in Plasmodium falciparum , 2007, Molecular microbiology.

[44]  K. Irvine,et al.  Fringe modulates Notch–ligand interactions , 1997, Nature.

[45]  Namshin Kim,et al.  The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species , 2006, Nucleic Acids Res..

[46]  孙林,et al.  Shewanella oneidensis MR-1对针铁矿的还原与汞的生物甲基化 , 2015 .

[47]  J. Stark,et al.  Network motifs: structure does not determine function , 2006, BMC Genomics.

[48]  M. Ibañes,et al.  Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear , 2014, Development.

[49]  Jonathan M.W. Slack,et al.  From egg to embryo : regional specification in early development , 1991 .

[50]  P. Maini,et al.  Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. , 2009, Developmental biology.

[51]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[52]  N. Gostling,et al.  From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design , 2002, Heredity.

[53]  Peter Tompa,et al.  The relationship between proteome size, structural disorder and organism complexity , 2011, Genome Biology.

[54]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[55]  Ralf J. Sommer,et al.  The evolution of signalling pathways in animal development , 2003, Nature Reviews Genetics.

[56]  Robert M. French,et al.  Connectionist Models of Learning, Development and Evolution , 2001, Perspectives in Neural Computing.

[57]  G. von Dassow,et al.  Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. , 1999, The Journal of experimental zoology.

[58]  A. Garcı́a-Bellido,et al.  Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. , 1997, Development.

[59]  K. Page,et al.  A gene regulatory motif that generates oscillatory or multiway switch outputs , 2013, Journal of The Royal Society Interface.

[60]  James Sharpe,et al.  An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients , 2010, Molecular systems biology.

[61]  Mark A McPeek,et al.  The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[62]  R. Solé,et al.  Spontaneous emergence of modularity in cellular networks , 2008, Journal of The Royal Society Interface.

[63]  S. Bray,et al.  Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. , 1997, Development.

[64]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[65]  Shigeru Kondo,et al.  Noise-resistant and synchronized oscillation of the segmentation clock , 2006, Nature.

[66]  R. Raff The Shape of Life , 1996 .

[67]  Joshua L. Payne,et al.  Function does not follow form in gene regulatory circuits , 2015, Scientific Reports.

[68]  Paul François,et al.  Core genetic module: the mixed feedback loop. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  J. Lewis,et al.  Notch signalling and the control of cell fate choices in vertebrates. , 1998, Seminars in cell & developmental biology.

[70]  Alexander D. Johnson,et al.  Intersecting transcription networks constrain gene regulatory evolution , 2015, Nature.

[71]  C. Furusawa,et al.  A Dynamical-Systems View of Stem Cell Biology , 2012, Science.

[72]  T. M. A. Fink,et al.  Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space , 2016, Journal of The Royal Society Interface.

[73]  Wendell A. Lim,et al.  Designing Synthetic Regulatory Networks Capable of Self-Organizing Cell Polarization , 2012, Cell.

[74]  Sui Huang,et al.  Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. , 2007, Developmental biology.

[75]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[76]  James Sharpe,et al.  A Local, Self-Organizing Reaction-Diffusion Model Can Explain Somite Patterning in Embryos. , 2015, Cell systems.

[77]  V. Hakim,et al.  Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks. , 2012, Biophysical journal.

[78]  Nicolas Daudet,et al.  Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation , 2005, Development.

[79]  I. Palmeirim,et al.  Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. , 2016, Seminars in cell & developmental biology.

[80]  P. Maini,et al.  Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. , 1996, Journal of theoretical biology.

[81]  F. Rijli,et al.  Hox genes in neural patterning and circuit formation in the mouse hindbrain. , 2009, Current topics in developmental biology.

[82]  R. Raff,et al.  Modularity and dissociation in the evolution of gene expression territories in development , 2000, Evolution & development.

[83]  M. Lei,et al.  Crystal structure of the TRBD domain of TERT and the CR4/5 of TR , 2014 .

[84]  Uri Alon,et al.  An Analytically Solvable Model for Rapid Evolution of Modular Structure , 2009, PLoS Comput. Biol..

[85]  Paulien Hogeweg,et al.  Material for : “ Evolution of networks for body plan patterning ; Interplay of modularity , robustness and evolvability ” , 2011 .

[86]  J. Mattick,et al.  The relationship between non-protein-coding DNA and eukaryotic complexity. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[87]  Domenico Parisi,et al.  Evolving Modular Architectures for Neural Networks , 2000, NCPW.

[88]  B. Cairns The logic of chromatin architecture and remodelling at promoters , 2009, Nature.