Computational Modelling of Rectangular Sub-Boundary Layer Vortex Generators

Vortex generators (VGs) are increasingly used in the wind turbine manufacture industry as flow control devices to improve rotor blade aerodynamic performance. Nevertheless, VGs may produce excess residual drag in some applications. The so-called sub-boundary layer VGs can provide an effective flow-separation control with lower drag than the conventional VGs. The main objective of this study is to investigate how well the simulations can reproduce the physics of the flow of the primary vortex generated by rectangular sub-boundary layer VGs mounted on a flat plate with a negligible pressure gradient with an angle of attack of the vane to the oncoming flow of β = 18°. Three devices with aspect ratio values of 2, 2.5 and 3 are qualitatively and quantitatively compared. To that end, computational simulations have been carried out using the RANS (Reynolds averaged Navier–Stokes) method and at Reynolds number Re = 2600 based on the boundary layer momentum thickness θ at the VG position. The computational results show good agreement with the experimental data provided by the Advanced Aerodynamic Tools of Large Rotors (AVATAR) European project for the development and validation of aerodynamic models. Finally, the results indicate that the highest VG seems to be more suitable for separation control applications.

[1]  Spyros G. Voutsinas,et al.  Experimental benchmark and code validation for airfoils equipped with passive vortex generators , 2016 .

[2]  Clara Marika Velte,et al.  Investigation of flow behind vortex generators by stereo particle image velocimetry on a thick airfoil near stall , 2013 .

[3]  Carlos Simao Ferreira,et al.  AVATAR: AdVanced Aerodynamic Tools for lArge Rotors , 2015 .

[4]  Ekaitz Zulueta,et al.  Microtab Design and Implementation on a 5 MW Wind Turbine , 2017 .

[5]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[6]  Ekaitz Zulueta,et al.  Parametric study of low-profile vortex generators , 2017 .

[7]  Piotr Doerffer,et al.  Recent Progress in Flow Control for Practical Flows: Results of the STADYWICO and IMESCON Projects , 2017 .

[8]  J. Lin,et al.  Small submerged vortex generators for turbulent flow separation control , 1990 .

[9]  Ekaitz Zulueta,et al.  Computational characterization of the vortex generated by a Vortex Generator on a flat plate for different vane angles , 2017 .

[10]  Mohamed Gad-el-Hak,et al.  Flow Control: Passive, Active, and Reactive Flow Management , 2000 .

[11]  Ekaitz Zulueta Guerrero,et al.  ESTADO DEL ARTE SOBRE DISPOSITIVOS ACTIVOS Y PASIVOS DE CONTROL DE FLUJO PARA TURBINAS EÓLICAS , 2016 .

[12]  G. M. Gregorek,et al.  Experimental Study of Airfoil Performance with Vortex Generators , 1987 .

[13]  Yongqian Liu,et al.  Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines , 2015 .

[14]  Stig Øye,et al.  The ELKRAFT 1 MW Wind Turbine: Results from the Test Program , 1996 .

[15]  U. Fernández-Gámiz,et al.  Computational study of the vortex path variation with the VG height , 2014 .

[16]  Arnold M. Kuethe,et al.  Effect of Streamwise Vortices on Wake Properties Associated with Sound Generation , 1972 .

[17]  Clara Marika Velte,et al.  Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow , 2009, Journal of Fluid Mechanics.

[18]  I. W. Kaynes,et al.  The potential application of flow control to helicopter rotor blades , 2004 .

[19]  John C. Lin,et al.  Review of research on low-profile vortex generators to control boundary-layer separation , 2002 .

[20]  Eduard Egusquiza,et al.  Testing of self-similarity and helical symmetry in vortex generator flow simulations , 2016 .

[21]  Frederik Zahle,et al.  Aero-Elastic Optimization of a 10 MW Wind Turbine , 2015 .

[22]  D. Baldacchino,et al.  Towards integral boundary layer modelling of vane-type vortex generators , 2015 .

[23]  Stephen K. Robinson,et al.  Separation control on high-lift airfoils via micro-vortex generators , 1994 .

[24]  George N. Barakos,et al.  A framework for CFD analysis of helicopter rotors in hover and forward flight , 2006 .

[25]  Michel Stanislas,et al.  Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators , 2006 .

[26]  Ekaitz Zulueta,et al.  Flow Control Devices for Wind Turbines , 2017 .

[27]  Ekaitz Zulueta,et al.  Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices , 2017 .

[28]  Niels N. Sørensen,et al.  Prediction of the Effect of Vortex Generators on Airfoil Performance , 2014 .

[29]  William Murphy,et al.  The application of sub-boundary layer vortex generators to reduce canopy 'Mach rumble' interior noise on the Gulfstream III , 1987 .

[30]  T. L. Sullivan Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine , 1984 .