Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems
暂无分享,去创建一个
Ying Gao | Xinmin Yang | S. H. Hou | S. Hou | Xinmin Yang | Ying Gao
[1] M. Durea,et al. Lagrange Multipliers for ε-Pareto Solutions in Vector Optimization with Nonsolid Cones in Banach Spaces , 2010 .
[2] J. Dutta,et al. ON APPROXIMATE MINIMA IN VECTOR OPTIMIZATION , 2001 .
[3] César Gutiérrez,et al. Generalized ε-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions , 2010 .
[4] J. B. Hiriart-Urruty,et al. Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..
[5] S. H. Hou,et al. General Ekeland's Variational Principle for Set-Valued Mappings , 2000 .
[6] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[7] P. Loridan. Necessary conditions for ε-optimality , 1982 .
[8] X. X. Huang. OPTIMALITY CONDITIONS AND APPROXIMATE OPTIMALITY CONDITIONS IN LOCALLY LIPSCHITZ VECTOR OPTIMIZATION , 2002 .
[9] A. Taa,et al. On Lagrance-Kuhn-Tucker Mulitipliers for Muliobjective Optimization Problems , 1997 .
[10] J. Hiriart-Urruty. New concepts in nondifferentiable programming , 1979 .
[11] Alberto Zaffaroni,et al. Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..
[12] D. J. White,et al. Epsilon efficiency , 1986 .
[13] J. Qiu. A generalized Ekeland vector variational principle and its applications in optimization , 2009 .
[14] V. Novo,et al. On Approximate Efficiency in Multiobjective Programming , 2006, Math. Methods Oper. Res..
[15] H. Riahi,et al. Variational Methods in Partially Ordered Spaces , 2003 .
[16] César Gutiérrez,et al. Multiplier Rules and Saddle-Point Theorems for Helbig’s Approximate Solutions in Convex Pareto Problems , 2005, J. Glob. Optim..
[17] Christiane Tammer,et al. Fuzzy necessary optimality conditions for vector optimization problems , 2009 .
[18] Eugenia Panaitescu,et al. Approximate quasi efficient solutions in multiobjective optimization , 2008 .
[19] Marc Ciligot Travain. On lagrange-kuhn-tucker multipliers for pareto optimization problems , 1994 .
[20] A. Mehra,et al. Two Types of Approximate Saddle Points , 2008 .
[21] Shouyang Wang,et al. ε-approximate solutions in multiobjective optimization , 1998 .
[22] Jing-Hui Qiu. Ekeland's variational principle in locally convex spaces and the density of extremal points☆ , 2009 .
[23] P. Loridan. ε-solutions in vector minimization problems , 1984 .
[24] C. Zălinescu,et al. Lipschitz properties of the scalarization function and applications , 2010 .
[25] César Gutiérrez,et al. A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems , 2006, SIAM J. Optim..
[26] Duan Li,et al. Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions , 2001 .
[27] Bienvenido Jiménez,et al. A Set-Valued Ekeland's Variational Principle in Vector Optimization , 2008, SIAM J. Control. Optim..
[28] Bienvenido Jiménez,et al. Strict Efficiency in Set-Valued Optimization , 2009, SIAM J. Control. Optim..
[29] Andreas H. Hamel. An ϵ-lagrange multiplier rule for a mathematical programming problem on banacch spaces , 2001 .