Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems

In this paper, we introduce a new concept of ϵ-efficiency for vector optimization problems. This extends and unifies various notions of approximate solutions in the literature. Some properties for this new class of approximate solutions are established, and several existence results, as well as nonlinear scalarizations, are obtained by means of the Ekeland’s variational principle. Moreover, under the assumption of generalized subconvex functions, we derive the linear scalarization and the Lagrange multiplier rule for approximate solutions based on the scalarization in Asplund spaces.

[1]  M. Durea,et al.  Lagrange Multipliers for ε-Pareto Solutions in Vector Optimization with Nonsolid Cones in Banach Spaces , 2010 .

[2]  J. Dutta,et al.  ON APPROXIMATE MINIMA IN VECTOR OPTIMIZATION , 2001 .

[3]  César Gutiérrez,et al.  Generalized ε-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions , 2010 .

[4]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[5]  S. H. Hou,et al.  General Ekeland's Variational Principle for Set-Valued Mappings , 2000 .

[6]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[7]  P. Loridan Necessary conditions for ε-optimality , 1982 .

[8]  X. X. Huang OPTIMALITY CONDITIONS AND APPROXIMATE OPTIMALITY CONDITIONS IN LOCALLY LIPSCHITZ VECTOR OPTIMIZATION , 2002 .

[9]  A. Taa,et al.  On Lagrance-Kuhn-Tucker Mulitipliers for Muliobjective Optimization Problems , 1997 .

[10]  J. Hiriart-Urruty New concepts in nondifferentiable programming , 1979 .

[11]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[12]  D. J. White,et al.  Epsilon efficiency , 1986 .

[13]  J. Qiu A generalized Ekeland vector variational principle and its applications in optimization , 2009 .

[14]  V. Novo,et al.  On Approximate Efficiency in Multiobjective Programming , 2006, Math. Methods Oper. Res..

[15]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[16]  César Gutiérrez,et al.  Multiplier Rules and Saddle-Point Theorems for Helbig’s Approximate Solutions in Convex Pareto Problems , 2005, J. Glob. Optim..

[17]  Christiane Tammer,et al.  Fuzzy necessary optimality conditions for vector optimization problems , 2009 .

[18]  Eugenia Panaitescu,et al.  Approximate quasi efficient solutions in multiobjective optimization , 2008 .

[19]  Marc Ciligot Travain On lagrange-kuhn-tucker multipliers for pareto optimization problems , 1994 .

[20]  A. Mehra,et al.  Two Types of Approximate Saddle Points , 2008 .

[21]  Shouyang Wang,et al.  ε-approximate solutions in multiobjective optimization , 1998 .

[22]  Jing-Hui Qiu Ekeland's variational principle in locally convex spaces and the density of extremal points☆ , 2009 .

[23]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[24]  C. Zălinescu,et al.  Lipschitz properties of the scalarization function and applications , 2010 .

[25]  César Gutiérrez,et al.  A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems , 2006, SIAM J. Optim..

[26]  Duan Li,et al.  Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions , 2001 .

[27]  Bienvenido Jiménez,et al.  A Set-Valued Ekeland's Variational Principle in Vector Optimization , 2008, SIAM J. Control. Optim..

[28]  Bienvenido Jiménez,et al.  Strict Efficiency in Set-Valued Optimization , 2009, SIAM J. Control. Optim..

[29]  Andreas H. Hamel An ϵ-lagrange multiplier rule for a mathematical programming problem on banacch spaces , 2001 .