Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase

The continued convergence of electronics and photonics on the chip scale can benefit from the voltage control of optical polarization for applications in communications, signal processing and sensing. It is challenging, however, to electrically manipulate the polarization state of light in planar optical waveguides. Here we introduce out-of-plane optical waveguides, allowing access to Berry's phase, a quantum-mechanical phenomenon of purely topological origin. As a result, electrically tunable optical polarization rotation on the chip scale is achieved. Devices fabricated in the silicon-on-insulator material platform are not limited to a single static polarization state. Rather, they can exhibit dynamic tuning of polarization from the fundamental transverse electric mode to the fundamental transverse magnetic mode. Electrical tuning of optical polarization over a 19 dB range of polarization extinction ratio is demonstrated with less than 1 dB of conversion loss at infrared wavelengths. Compact system architectures involving dynamic control of optical polarization in integrated circuits are envisioned.

[1]  E. Galvez,et al.  Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  R. Alferness,et al.  High-speed waveguide electro-optic polarization modulator. , 1982, Optics letters.

[3]  Walter Margulis,et al.  All-fiber polarization switch. , 2007, Optics letters.

[4]  S. Bedair,et al.  PZT‐Based Piezoelectric MEMS Technology , 2012 .

[5]  Hiroshi Fukuda,et al.  Polarization rotator based on silicon wire waveguides. , 2008, Optics express.

[6]  Linjie Zhou,et al.  Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback. , 2007, Optics express.

[7]  Wim Bogaerts,et al.  A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. , 2007, Optics express.

[8]  Christopher Batten,et al.  Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics , 2008, 2008 16th IEEE Symposium on High Performance Interconnects.

[9]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Fabio Sciarrino,et al.  Rotated waveplates in integrated waveguide optics , 2014, Nature Communications.

[11]  P. Sun,et al.  Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits. , 2012, Optics express.

[12]  E. Ollier Optical MEMS devices based on moving waveguides , 2002 .

[13]  Mode conversion and birefringence adjustment by focused-ion-beam etching for slanted rib waveguide walls. , 2003, Optics letters.

[14]  Jurgen Michel,et al.  Low-loss compact-size slotted waveguide polarization rotator and transformer. , 2007, Optics letters.

[15]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[16]  T. Tsuchizawa,et al.  Silicon photonic circuit with polarization diversity. , 2008, Optics express.

[17]  P. Sun,et al.  Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits. , 2009, Optics express.

[18]  Yi Xuan,et al.  Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth. , 2010, Optics express.

[19]  Henry I. Smith,et al.  Polarization-transparent microphotonic devices in the strong confinement limit , 2007 .

[20]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Xiaoping Zheng,et al.  High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator , 2006 .

[22]  K. Bliokh,et al.  Geometrodynamics of spinning light , 2008, 0810.2136.

[23]  Tomita,et al.  Observation of Berry's topological phase by use of an optical fiber. , 1986, Physical review letters.

[24]  Enrique J. Galvez,et al.  Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[26]  B. M. A. Rahman,et al.  Design and characterization of compact single-section passive polarization rotator , 2001 .

[27]  B. Culshaw,et al.  Fiber-optic Sagnac interferometer for the observation of Berry’s topological phase , 2000 .

[28]  J. Bowers,et al.  Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. , 2011, Optics express.

[29]  D. Sandel,et al.  Coherent Digital Polarization Diversity Receiver for Real-Time Polarization-Multiplexed QPSK Transmission at 2.8 Gb/s , 2007, IEEE Photonics Technology Letters.

[30]  Berry's phase amplification by a ring resonator. , 2006, Optics letters.

[31]  Wu,et al.  Manifestations of Berry's topological phase for the photon. , 1986, Physical review letters.

[32]  Michal Lipson,et al.  Compact bandwidth tunable microring resonators , 2008 .

[33]  Michael G. Wood,et al.  Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides , 2014 .

[34]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[35]  Yang Yue,et al.  Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator. , 2009, Optics express.

[36]  Tetsuya Mizumoto,et al.  Single-trench waveguide TE-TM mode converter. , 2009, Optics express.

[37]  A. Melloni,et al.  Effects of polarization rotation in optical ring-resonator-based devices , 2006, Journal of Lightwave Technology.

[38]  Giuseppe Vallone,et al.  Polarization entangled states measurement on a chip , 2011, Optics + Optoelectronics.

[39]  Fiber polarization-rotation switch based on modulation instability. , 1989, Optics letters.