Spectro-electrochemical toolbox for monitoring and controlling quinone-mediated redox-driven molecular gripping

[1]  F. Diederich,et al.  Thioether‐Functionalized Quinone‐Based Resorcin[4]arene Cavitands: Electroswitchable Molecular Actuators , 2019, Helvetica Chimica Acta.

[2]  F. Diederich,et al.  Light-actuated resorcin[4]arene cavitands , 2018, Tetrahedron.

[3]  F. Diederich,et al.  Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. , 2018, Chemistry.

[4]  F. Diederich,et al.  Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. , 2016, The journal of physical chemistry letters.

[5]  P. Hamm,et al.  Quinones as Reversible Electron Relays in Artificial Photosynthesis. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  E. Blart,et al.  A Molecular Tetrad That Generates a High-Energy Charge-Separated State by Mimicking the Photosynthetic Z-Scheme. , 2016, Journal of the American Chemical Society.

[7]  D. Nocera,et al.  Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer. , 2016, Angewandte Chemie.

[8]  T. Noguchi,et al.  Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation , 2015, Proceedings of the National Academy of Sciences.

[9]  W. Domcke,et al.  Photoinduced water splitting via benzoquinone and semiquinone sensitisation. , 2015, Physical chemistry chemical physics : PCCP.

[10]  Pietro Vidossich,et al.  A Tetraferrocenyl-Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts. , 2015, Chemistry.

[11]  C. Wraight,et al.  Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers. , 2015, The journal of physical chemistry. B.

[12]  Jeanne Crassous,et al.  Helicene quinones: redox-triggered chiroptical switching and chiral recognition of the semiquinone radical anion lithium salt by electron nuclear double resonance spectroscopy. , 2014, Journal of the American Chemical Society.

[13]  Frank Neese,et al.  Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation , 2014, Science.

[14]  V. Azov,et al.  Calix[4]arenes with 1,2- and 1,3-upper rim tetrathiafulvalene bridges , 2014 .

[15]  François Diederich,et al.  Development of redox-switchable resorcin[4]arene cavitands. , 2014, Accounts of chemical research.

[16]  W. Lubitz,et al.  High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: towards characterization of heterogeneity of microenvironments in spin-labeled systems. , 2014, Journal of magnetic resonance.

[17]  T. Rajh,et al.  A bioinspired redox relay that mimics radical interactions of the Tyr-His pairs of photosystem II. , 2014, Nature chemistry.

[18]  F. Diederich,et al.  Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands. , 2014, Journal of the American Chemical Society.

[19]  M. Bowman,et al.  A Caged, Destabilized, Free Radical Intermediate in the Q‐Cycle , 2013, Chembiochem : a European journal of chemical biology.

[20]  J. Bonin,et al.  Transient absorption spectroscopy studies of proton-coupled electron transfers , 2013 .

[21]  E. Martin,et al.  Hydrogen bonding between the Q(B) site ubisemiquinone and Ser-L223 in the bacterial reaction center: a combined spectroscopic and computational perspective. , 2012, Biochemistry.

[22]  L. Que,et al.  1H-ENDOR evidence for a hydrogen-bonding interaction that modulates the reactivity of a nonheme Fe(IV)═O unit. , 2012, Inorganic chemistry.

[23]  J. F. Stoddart,et al.  Radically enhanced molecular switches. , 2012, Journal of the American Chemical Society.

[24]  F. Diederich,et al.  Redox-switchable resorcin[4]arene cavitands: molecular grippers. , 2012, Journal of the American Chemical Society.

[25]  René M. Williams,et al.  Bis-semiquinone (bi-radical) formation by photoinduced proton coupled electron transfer in covalently linked catechol-quinone systems: Aviram's hemiquinones revisited. , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[26]  O. Wenger,et al.  Hydrogen-bond strengthening upon photoinduced electron transfer in ruthenium-anthraquinone dyads interacting with hexafluoroisopropanol or water. , 2012, The journal of physical chemistry. A.

[27]  F. Diederich,et al.  Quinone-based, redox-active resorcin[4]arene cavitands. , 2012, Angewandte Chemie.

[28]  W. Lubitz,et al.  A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. , 2012, Journal of magnetic resonance.

[29]  J. F. Stoddart,et al.  A light-stimulated molecular switch driven by radical-radical interactions in water. , 2011, Angewandte Chemie.

[30]  E. Martin,et al.  Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site. , 2011, Journal of the American Chemical Society.

[31]  Partha Sarathi Guin,et al.  Electrochemical Reduction of Quinones in Different Media: A Review , 2011 .

[32]  Orion B. Berryman,et al.  A light controlled cavitand wall regulates guest binding. , 2011, Chemical communications.

[33]  E. Hahn,et al.  Spin Echoes , 2011 .

[34]  R. L. Varma,et al.  Direct access to upper rim substituted mono- and diaryloxy calix[4]arenes via bis(spirodienone) route , 2010 .

[35]  J. Chambers Electrochemistry of quinones , 2010 .

[36]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[37]  W. Kaim,et al.  Spectroelectrochemistry: the best of two worlds. , 2009, Chemical Society reviews.

[38]  C. Massera,et al.  Molecular recognition on a cavitand-functionalized silicon surface. , 2009, Journal of the American Chemical Society.

[39]  Laura Pirondini,et al.  Supramolecular sensing with phosphonate cavitands. , 2008, Chemistry.

[40]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[41]  S. Fukuzumi,et al.  Direct EPR detection of a hydrogen-bonded complex between a semiquinone radical anion and a protonated amino acid, and electron transfer driven by hydrogen bonding. , 2007, Angewandte Chemie.

[42]  Laura Pirondini,et al.  Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. , 2007, Chemical Society reviews.

[43]  Bahram Hemmateenejad,et al.  Cyclic voltammetric, computational, and quantitative structure–electrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives , 2007 .

[44]  F. Diederich,et al.  Tetrathiafulvalene (TTF)‐Bridged Resorcin[4]arene Cavitands: Towards New Electrochemical Molecular Switches , 2006 .

[45]  G. Feher,et al.  Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: I. Identification of the ENDOR lines associated with the hydrogen bonds to the primary quinone QA*-. , 2006, Biophysical journal.

[46]  D. Murphy,et al.  Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices. , 2006, Chemical Society reviews.

[47]  James K. Gimzewski,et al.  Resorcin[4]arene Cavitand‐Based Molecular Switches , 2006 .

[48]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[49]  P. Gast,et al.  EPR characterisation of the triplet state in photosystem II reaction centers with singly reduced primary acceptor Q(A). , 2005, Biochimica et biophysica acta.

[50]  G. Zbinden,et al.  Effects of seven anthracyclin antibiotics on electrocardiogram and mitochondrial function of rat hearts , 1975, Agents and Actions.

[51]  H. Zimmermann,et al.  Asymmetric Hydrogen-Bonding of the Quinone Cofactor in Photosystem I Probed by 13C-Labeled Naphthoquinones† , 2004 .

[52]  M. Munzarová DFT Calculations of EPR Hyperfine Coupling Tensors , 2004 .

[53]  B. Hong,et al.  Mechanistic Study on Electrochemical Reduction of Calix[4]quinone in Acetonitrile Containing Water§ , 2004 .

[54]  F. Neese,et al.  Hydrogen bond geometries from electron paramagnetic resonance and electron-nuclear double resonance parameters: density functional study of quinone radical anion-solvent interactions. , 2004, Journal of the American Chemical Society.

[55]  D. Ross,et al.  Cytotoxic properties of iron-hydroxynaphthoquinone complexes in rat hepatocytes , 1996, Biometals.

[56]  Franois Diederich,et al.  ZnII-induced conformational control of amphiphilic cavitands in Langmuir monolayersElectronic supplementary information (ESI) available: characterization of 1 and 2; protocol of Langmuir experiments performed on the water subphase at different pH; Job plot analysis. See http://www.rsc.org/suppdata/c , 2004 .

[57]  I. González,et al.  Effect of Host and Guest Structures on Hydrogen Bonding Association Influence on Stoichiometry and Equilibrium Constants , 2003 .

[58]  J. Kampf,et al.  Trends in exchange coupling for trimethylenemethane-type Bis(semiquinone) biradicals and correlation of magnetic exchange with mixed valency for cross-conjugated systems. , 2003, Journal of the American Chemical Society.

[59]  V. Cherkasov,et al.  EPR Study of o‐Semiquinone‐Catecholate Cobalt Complexes with Bis(diphenylphosphanyl)ethane , 2003 .

[60]  I. González,et al.  A Model for Characterization of Successive Hydrogen Bonding Interactions with Electrochemically Generated Charged Species. The Quinone Electroreduction in the Presence of Donor Protons , 2003 .

[61]  Y. Shim,et al.  In‐Situ ESR Detection of Radical Species of p‐Benzoquinone in Aqueous Media , 2002 .

[62]  C. Nuckolls,et al.  Molecular encapsulation. , 2002, Angewandte Chemie.

[63]  M. Goulart,et al.  Some Applications of Electrochemistry in Biomedical Chemistry. Emphasis on the Correlation of Electrochemical and Bioactive Properties , 2002 .

[64]  Metabolic activation of adriamycin by NADPH-cytochrome P450 reductase; overview of its biological and biochemical effects. , 2002, Acta biochimica Polonica.

[65]  W. Lubitz,et al.  High-frequency EPR studies on cofactor radicals in photosystem I , 2001 .

[66]  James K. Gimzewski,et al.  Synthesis of molecular-gripper-type dynamic receptors and STM-imaging of self-assembled monolayers on gold , 2001 .

[67]  Andrew Beeby,et al.  Conformational Switching of Resorcin[4]arene Cavitands by Protonation, Preliminary Communication , 2001 .

[68]  Yanhui Tang,et al.  Spectroelectrochemistry for Electroreduction of p-Benzoquinone in Unbuffered Aqueous Solution , 2001 .

[69]  Keiji Hirose A Practical Guide for the Determination of Binding Constants , 2001 .

[70]  Dennis H. Evans,et al.  Anomalous behavior in the two-step reduction of quinones in acetonitrile , 2001 .

[71]  R. Forster,et al.  Protonation reactions of anthraquinone-2,7-disulphonic acid in solution and within monolayers , 2001 .

[72]  F. Trotta,et al.  Polycarboxylated Derivatives of b.beta;-Cyclodextrin , 2001 .

[73]  A. Caneschi,et al.  Ferromagnetically coupled bis(semiquinone) ligand enforces high-spin ground states in bis-metal complexes. , 2001, Inorganic chemistry.

[74]  T. Ouimet,et al.  Electrochemically controlled hydrogen bonding. o-Quinones as simple redox-dependent receptors for arylureas. , 2000, The Journal of organic chemistry.

[75]  G. Feher,et al.  EPR Study of the Molecular and Electronic Structure of the Semiquinone Biradical QA-•QB-• in Photosynthetic Reaction Centers from Rhodobacter sphaeroides , 2000 .

[76]  I. Ginsburg,et al.  Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity? , 1999, European journal of medicinal chemistry.

[77]  M. Aguilar-martínez,et al.  An Experimental and Theoretical Study of the Substituent Effects on the Redox Properties of 2-[(R-phenyl)amine]-1,4-naphthalenediones in Acetonitrile. , 1999, The Journal of organic chemistry.

[78]  S. Pedersen,et al.  New methods for the accurate determination of extinction and diffusion coefficients of aromatic and heteroaromatic radical anions in N,N-dimethylformamide , 1998 .

[79]  R. Webster,et al.  MECHANISTIC ASPECTS OF THE ELECTROCHEMICAL REDUCTION OF 7,7,8,8-TETRACYANOQUINODIMETHANE IN THE PRESENCE OF MG2+ OR BA2+ , 1998 .

[80]  R. Webster,et al.  Ion pair formation between the electrogenerated 2,3-dichloro-5,6-dicyano-1,4 -benzoquinone dianion and the sodium ion at platinum surfaces , 1998 .

[81]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[82]  W. Lubitz,et al.  Influence of hydrogen bonds on the electronicg-tensor and13C-hyperfine tensors of13C-labeled ubiquinones — EPR and ENDOR study , 1998 .

[83]  L. Echegoyen,et al.  Electrochemistry of Supramolecular Systems. , 1998, Angewandte Chemie.

[84]  N. Gupta,et al.  Hydrogen-Bonding and Protonation Effects in Electrochemistry of Quinones in Aprotic Solvents , 1997 .

[85]  W. Boireau,et al.  An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastoquinones incorporated in supported phospholipid layers. , 1997, Biophysical journal.

[86]  Y. Shim,et al.  Spectroelectrochemical studies of p-benzoquinone reduction in aqueous media , 1997 .

[87]  Yukari Sato,et al.  Electrochemical properties of the 2-mercaptohydroquinone monolayer on a gold electrode. Effect of solution pH, adsorption time and concentration of the modifying solution , 1996 .

[88]  K. Itoh,et al.  FT Pulsed ESR/Electron Spin Transient Nutation (ESTN) Spec-Troscopy Applied to High-Spin Systems in Solids; Direct Evi-Dence of a Topologically Controlled High-Spin Polymer as Models for Quasi ID Organic Ferro-and Superpara-Magnets , 1996 .

[89]  M. Oyama,et al.  Solvent effect on the ion pair formation between 2,3,5,6-tetrachloro-1,4-benzoquinone anion radical and Mg2+ measured using a pulse electrolysis stopped flow method , 1996 .

[90]  A. E. Alegria,et al.  Thermodynamics of semiquinone disproportionation in aqueous buffer , 1996 .

[91]  T. Chung,et al.  Electrochemical behavior of calix[4]arenediquinones and their cation binding properties , 1995 .

[92]  T. Chung,et al.  Electrochemical recognition of ammonium and alkali metal cations with calix[4]arenediquinone , 1995 .

[93]  B. Pendley,et al.  Microelectrodes as probes in low electrolyte solutions : the reduction of quinone in aqueous sulfuric acid solution , 1994 .

[94]  L. Echegoyen,et al.  Electroactive Calixarenes. 1. Redox and Cation Binding Properties of Calixquinones , 1994 .

[95]  Philip A. Gale,et al.  Diester-calix[4]arenediquinone complexation and electrochemical recognition of group 1 and 2, ammonium and alkyl ammonium guest cations , 1994 .

[96]  E. Feinstein,et al.  Dependence of nucleic acid degradation on in situ free-radical production by adriamycin. , 1993, Biochemistry.

[97]  C. Gutsche,et al.  Calixarenes. 32. Reactions of calix[4]quinones , 1993 .

[98]  K. Pekmez,et al.  Electrochemistry in aprotic solvents containing anhydrous perchloric acid electroreduction behavior of quinones , 1993 .

[99]  W. Lubitz,et al.  3-mm High-field EPR on semiquinone radical anions Q.cntdot.- related to photosynthesis and on the primary donor P.cntdot.+ and acceptor QA.cntdot.- in reaction centers of Rhodobacter sphaeroides R-26 , 1993 .

[100]  G. Feher,et al.  Proton transfer in reaction centers from photosynthetic bacteria. , 1992, Annual review of biochemistry.

[101]  M. Oyama,et al.  Pulse-electrolysis stopped-flow method for the electrospectroscopic analysis of short-lived intermediates generated in the electrooxidation of triphenylamine , 1991 .

[102]  B. Trumpower,et al.  The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. , 1990, The Journal of biological chemistry.

[103]  R. Crooks,et al.  Adsorption and electrode reactions of disulfonated anthraquinones at mercury electrodes , 1990 .

[104]  D. A. Gustowski,et al.  Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems , 1988 .

[105]  R. Hsung,et al.  Electroreductive cleavage of substituted 9,10-anthraquinones in 50% aqueous THF buffers: a pH-dependent process , 1988 .

[106]  R. Helgeson,et al.  Host-guest complexation. 46. Cavitands as open molecular vessels form solvates , 1988 .

[107]  N. Yamamoto,et al.  Inhibition by doxorubicin of human immuno-deficiency virus (HIV) infection and replication in vitro. , 1987, The Journal of antibiotics.

[108]  R. Wightman,et al.  Disproportionation of Quinone Radical Anions in Protic Solvents at High pH , 1986 .

[109]  C. Rüssel,et al.  Heterogeneous electron exchange of quinones in aprotic solvents: Part III. The second reduction step of p-benzoquinone and its dependence on the supporting electrolyte , 1986 .

[110]  P. Dutta,et al.  Resonance Raman spectroscopic studies of adriamycin and copper(II)-adriamycin and copper(II)-adriamycin-DNA complexes. , 1986, Biochemistry.

[111]  A. Garnier-Suillerot,et al.  Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and antitumor activity. , 1985, Biochemistry.

[112]  S. I. Bailey,et al.  A cyclic voltammetric study of the aqueous electrochemistry of some quinones , 1985 .

[113]  E. Goormaghtigh,et al.  Anthracycline glycoside-membrane interactions. , 1984, Biochimica et biophysica acta.

[114]  E. Demant NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe3+. , 1983, European journal of biochemistry.

[115]  P. K. Jensen,et al.  Destruction of phospholipids and respiratory-chain activity in pig-heart submitochondrial particles induced by an adriamycin-iron complex. , 1983, European journal of biochemistry.

[116]  J. Doroshow,et al.  Mitochondrial NADH dehydrogenase‐catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5‐iminodaunorubicin , 1983, FEBS letters.

[117]  T. Ramasarma,et al.  Inhibition of mitochondrial oxidative phosphorylation by adriamycin. , 1983, Biochimica et biophysica acta.

[118]  J. Stradiņš,et al.  The mechanism of electrochemical reduction of intramolecular charge-transfer complexes derived from 1,4-naphthoquinone , 1983 .

[119]  M. Soriaga,et al.  Orientational transitions of aromatic molecules adsorbed on platinum electrodes , 1982 .

[120]  R. Baldwin,et al.  Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. , 1982, Analytical chemistry.

[121]  D. Cram,et al.  Cavitands: synthetic molecular vessels , 1982 .

[122]  C. Winterbourn,et al.  Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation , 1982, FEBS letters.

[123]  E. Acton,et al.  Further studies on the generation of reactive oxygen species from activated anthracyclines and the relationship to cytotoxic action and cardiotoxic effects. , 1982, Biochemical pharmacology.

[124]  J. Lown,,et al.  Molecular mechanisms of binding and single-strand scission of DNA by the antitumor antibiotics saframycins A and C , 1982 .

[125]  C. Winterbourn Evidence for the production of hydroxyl radicals from the adriamycin semiquinone and H2O2 , 1981 .

[126]  D. T. Sawyer,et al.  Redox chemistry of metal-catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products , 1981 .

[127]  T. Woodcock,et al.  Electrochemical behavior of adriamycin at carbon paste electrodes , 1981 .

[128]  R. Mason,et al.  Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. , 1980, Biochimica et biophysica acta.

[129]  R. Rieke,et al.  Electrochemical studies of methyl substituted 1,4-quinones: Part I. The electrochemical dimerization of duroquinone , 1979 .

[130]  B. Malfoy,et al.  Electrochemical study of DNA-anthracyclines interaction. , 1978, Biochemical and biophysical research communications.

[131]  J. Lown,,et al.  Studies related to antitumor antibiotics. Part XIV. Reactions of mitomycin B with DNA. , 1978, Canadian journal of biochemistry.

[132]  G. Zbinden,et al.  Model systems for cardiotoxic effects of anthracyclines. , 1978, Antibiotics and chemotherapy.

[133]  V. Ferrans Overview of cardiac pathology in relation to anthracycline cardiotoxicity. , 1978, Cancer treatment reports.

[134]  W. S. Thayer Adriamycin stimulated superoxide formation in submitochondrial particles. , 1977, Chemico-biological interactions.

[135]  N. Bachur,et al.  Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. , 1977, Molecular pharmacology.

[136]  P. Hochstein,et al.  Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. , 1977, Biochemical and biophysical research communications.

[137]  K. C. Majumdar,et al.  Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. , 1977, Biochemical and biophysical research communications.

[138]  J. Lown,,et al.  Electrochemical Studies of Antitumor Antibiotics III . Daunorubicin and Adriamycin , 1977 .

[139]  I. Hansen,et al.  Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxidase, by adriamycin and other quinones having antitumor activity. , 1974, Biochemical and biophysical research communications.

[140]  E. R. Davies,et al.  A new pulse endor technique , 1974 .

[141]  P. Montalbini Effect of infection by Uromyces phaseoli (Pers.) Wint. on electron carrier quinones in bean leaves , 1973 .

[142]  R. Parsons,et al.  The rate of a simple electron exchange reaction as a function of the electrode material , 1973 .

[143]  M. Fujihira,et al.  The Effect of Water on the Reduction Potentials of Some Aromatic Compounds in the DMF-Water System , 1971 .

[144]  M. Hawley,et al.  Electrochemical studies of the redox behavior of α-tocopherylquinone and a related model quinone , 1970 .

[145]  F. Anson,et al.  A Chronocoulometric Study of the Adsorption of Anthraquinone Monosulfonate on Mercury , 1968 .

[146]  R. Silvestrini,et al.  ‘Daunomycin’, a New Antibiotic of the Rhodomycin Group , 1964, Nature.

[147]  J. C. Abbott,et al.  Indirect Polarographic Determination of Acids. , 1963 .

[148]  I. Kolthoff,et al.  Polarography and Voltammetry in Dimethylsulfoxide , 1961 .

[149]  M. E. Peover,et al.  74. Polarographic reduction of aromatic hydrocarbons and carbonyl compounds in dimethylformamide in the presence of proton-donors , 1960 .

[150]  G. J. Hoijtink,et al.  Electron transfer to aromatic hydrocarbons at the dropping mercury electrode , 1959 .

[151]  I. Kolthoff,et al.  The Use of the Dropping Mercury Electrode as an Indicator Electrode in Poorly Poised Systems , 1941 .

[152]  O. H. Müller Oxidation—Reduction Potentials Measured with the Dropping Mercury Electrode. III. Polarographic Study of Quinhydrone in Buffered and Unbuffered Solutions1 , 1940 .