Probabilistic streamline q-ball tractography using the residual bootstrap

Q-ball imaging has the ability to discriminate multiple intravoxel fiber populations within regions of complex white matter architecture. This information can be used for fiber tracking; however, diffusion MR is susceptible to noise and multiple other sources of uncertainty affecting the measured orientation of fiber bundles. The proposed residual bootstrap method utilizes a spherical harmonic representation for high angular resolution diffusion imaging (HARDI) data in order to estimate the uncertainty in multimodal q-ball reconstructions. The accuracy of the q-ball residual bootstrap technique was examined through simulation. The residual bootstrap method was then used in combination with q-ball imaging to construct a probabilistic streamline fiber tracking algorithm. The residual bootstrap q-ball fiber tracking algorithm is capable of following the corticospinal tract and corpus callosum through regions of crossing white matter tracts in the centrum semiovale. This fiber tracking algorithm is an improvement upon prior diffusion tensor methods and the q-ball data can be acquired in a clinically feasible time frame.

[1]  Christopher Nimsky,et al.  Preoperative and Intraoperative Diffusion Tensor Imaging-based Fiber Tracking in Glioma Surgery , 2005, Neurosurgery.

[2]  Kenji Ino,et al.  Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. , 2005, Journal of neurosurgery.

[3]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[4]  Derek K. Jones,et al.  Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia , 2006, Human brain mapping.

[5]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[6]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[7]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[8]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[10]  P. Frederickson,et al.  Icosahedral Discretization of the Two-Sphere , 1985 .

[11]  S. Schoenberg,et al.  Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters , 2007, Journal of magnetic resonance imaging : JMRI.

[12]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[13]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[14]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[15]  Pratik Mukherjee,et al.  Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. , 2004, Journal of neurosurgery.

[16]  D. K. Jones Tractography Gone Wild : Probabilistic Tracking Using the Wild Bootstrap , 2005 .

[17]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[18]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[19]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[20]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[21]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[22]  Roland G. Henry,et al.  Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants , 2005, NeuroImage.

[23]  A. Anderson Theoretical analysis of the effects of noise on diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[24]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[25]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[26]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[27]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[28]  T. Schwartz,et al.  Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. , 2001, Journal of neurosurgery.

[29]  Lucie Hertz-Pannier,et al.  Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography , 2006, NeuroImage.

[30]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[31]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[32]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[33]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[34]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[35]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[36]  Mark J. Lowe,et al.  An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI , 2007, NeuroImage.

[37]  Geoff J. M. Parker,et al.  Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging , 2004, NeuroImage.

[38]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.