Ultrastretchable Strain Sensors Using Carbon Black‐Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors

Keywords: strain sensors ; soft robotics ; wearable devices ; carbon black ; silicone elastomers Reference EPFL-ARTICLE-232604 Record created on 2017-11-30, modified on 2017-11-30

[1]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Nae-Eung Lee,et al.  Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. , 2015, ACS nano.

[4]  J. Huber,et al.  Electro-mechanical properties and electrostriction response of a rubbery polymer for EAP applications , 2012 .

[5]  T. K. Chaki,et al.  Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites , 2002 .

[6]  Daniel M. Vogt,et al.  Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing , 2015, Advanced materials.

[7]  Rebecca K. Kramer,et al.  Low‐Cost, Facile, and Scalable Manufacturing of Capacitive Sensors for Soft Systems , 2017 .

[8]  Hidenori Mimura,et al.  Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection , 2016 .

[9]  Daniel M. Vogt,et al.  Batch Fabrication of Customizable Silicone‐Textile Composite Capacitive Strain Sensors for Human Motion Tracking , 2017 .

[10]  James J.C. Busfield,et al.  Rubber abrasion at steady state , 2009 .

[11]  Huanyu Cheng,et al.  Large‐Area Ultrathin Graphene Films by Single‐Step Marangoni Self‐Assembly for Highly Sensitive Strain Sensing Application , 2016 .

[12]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[13]  Alexander Lion,et al.  A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation , 1996 .

[14]  Enzo Pasquale Scilingo,et al.  Strain sensing fabric for hand posture and gesture monitoring , 2005, IEEE Transactions on Information Technology in Biomedicine.

[15]  Jan-Chan Huang,et al.  Carbon black filled conducting polymers and polymer blends , 2002 .

[16]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[17]  H. Shea,et al.  High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors. , 2015, ACS applied materials & interfaces.

[18]  J. Accorsi,et al.  Additives: special carbon blacks for plastics , 1995 .

[19]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[20]  Shengyu Feng,et al.  Temperature effects of electrical resistivity of conductive silicone rubber filled with carbon blacks , 2003 .

[21]  Hyung Jin Sung,et al.  Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. , 2017, ACS applied materials & interfaces.

[22]  Carmel Majidi,et al.  Rapid Fabrication of Soft, Multilayered Electronics for Wearable Biomonitoring , 2016 .

[23]  Huanyu Cheng,et al.  Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors , 2016 .

[24]  James J.C. Busfield,et al.  Electrical and mechanical behavior of filled elastomers. I. The effect of strain , 2003 .

[25]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[26]  D. Nezich,et al.  A novel class of strain gauges based on layered percolative films of 2D materials. , 2012, Nano letters.

[27]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[28]  I. Park,et al.  Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review , 2016 .

[29]  B. Stenberg,et al.  Electrical conductivity of thermo-oxidatively-degraded EPDM rubber , 1992 .

[30]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[31]  Babak Ziaie,et al.  Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. , 2015, ACS applied materials & interfaces.

[32]  J. O'dwyer Dielectric properties of polymers , 1972 .

[33]  Carter S. Haines,et al.  Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles , 2015, Science.

[34]  Tao Chen,et al.  Negative Temperature Coefficient of Resistivity in Lightweight Conductive Carbon Nanotube/Polymer Composites , 2009 .

[35]  J. Busfield,et al.  Effect of materials variables on the tear behaviour of a non-crystallising elastomer , 2000 .

[36]  Yong-Lae Park,et al.  A Soft Strain Sensor Based on Ionic and Metal Liquids , 2013, IEEE Sensors Journal.

[37]  Daniel M. Vogt,et al.  Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers , 2014, Advanced materials.

[38]  T. K. Chaki,et al.  Electrical and mechanical properties of conducting carbon black filled composites based on rubber and rubber blends , 1999 .

[39]  I. Park,et al.  Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites , 2015, Nanotechnology.

[40]  Xiaodong He,et al.  Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. , 2013, ACS nano.

[41]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[42]  N. Lee,et al.  Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. , 2015, ACS nano.

[43]  Woo Jin Hyun,et al.  Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. , 2015, ACS applied materials & interfaces.