On the Exponentiation of Interval Matrices

The numerical computation of the exponentiation of a real matrix has been intensively studied. The main objective of a good numerical method is to deal with round-off errors and computational cost. The situation is more complicated when dealing with interval matrices exponentiation: Indeed, the main problem will now be the dependency loss of the different occurrences of the variables due to interval evaluation, which may lead to so wide enclosures that they are useless. In this paper, the problem of computing a sharp enclosure of the interval matrix exponential is proved to be NP-hard. Then the scaling and squaring method is adapted to interval matrices and shown to drastically reduce the dependency loss w.r.t. the interval evaluation of the Taylor series.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Nicholas J. Higham,et al.  A Schur-Parlett Algorithm for Computing Matrix Functions , 2003, SIAM J. Matrix Anal. Appl..

[3]  Awad H. Al-Mohy,et al.  A New Scaling and Squaring Algorithm for the Matrix Exponential , 2009, SIAM J. Matrix Anal. Appl..

[4]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[5]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[6]  Martine Ceberio,et al.  Horner's Rule for Interval Evaluation Revisited , 2002, Computing.

[7]  Vladik Kreinovich,et al.  Computing the cube of an interval matrix is NP-Hard , 2005, SAC '05.

[8]  E. P. Oppenheimer Application of interval analysis techniques to linear systems. II. The interval matrix exponential function , 1988 .

[9]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[10]  Nicholas J. Higham,et al.  The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[11]  A. A. Gaganov,et al.  Computation complexity of the range of a polynomial in several variables , 1985 .

[12]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[13]  A. Neumaier Interval methods for systems of equations , 1990 .

[14]  Tom Gambill,et al.  Logarithmic reduction of the wrapping effect with application to ordinary differential equations , 1988 .

[15]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[16]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[18]  Anthony N. Michel,et al.  Application of Interval Analysis Techniques to Linear Systems , 1987 .

[19]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[20]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[21]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[22]  R. Ward Numerical Computation of the Matrix Exponential with Accuracy Estimate , 1977 .

[23]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[24]  Pavel B. Bochev,et al.  A self-validating numerical method for the matrix exponential , 1989, Computing.

[25]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[26]  E. P. Oppenheimer,et al.  Application of interval analysis techniques to linear systems. III. Initial value problems , 1988 .

[27]  Tomasz Kapela,et al.  A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.

[28]  Matthias Althoff,et al.  Analyzing Reachability of Linear Dynamic Systems with Parametric Uncertainties , 2011 .

[29]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[30]  K. Baker,et al.  Standardized notation in interval analysis , 2010 .

[31]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[32]  J. Davenport Editor , 1960 .

[33]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[34]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[35]  Wolfgang Kuehn,et al.  Rigorously computed orbits of dynamical systems without the wrapping effect , 1998, Computing.

[36]  P. Eijgenraam The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .

[37]  E. P. Oppenheimer,et al.  Application of interval analysis techniques to linear systems. I. Fundamental results , 1988 .