Transferable pair potentials for CdS and ZnS crystals.

A set of interatomic pair potentials is developed for CdS and ZnS crystals. We show that a simple energy function, which has been used to describe the properties of CdSe [E. Rabani, J. Chem. Phys. 116, 258 (2002)], can be parametrized to accurately describe the lattice and elastic constants, and phonon dispersion relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures. The predicted coexistence pressure of the wurtzite and rocksalt structures as well as the equation of state are in good agreement with experimental observations. These new pair potentials enable the study of a wide range of processes in bulk and nanocrystalline II-VI semiconductor materials.

[1]  G. Ji,et al.  High-Pressure Phase Transitions and Thermodynamic Behaviors of Cadmium Sulfide , 2011 .

[2]  Lin-Wang Wang,et al.  Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod , 2011, Science.

[3]  M. Bonn,et al.  Anomalous independence of multiple exciton generation on different group IV-VI quantum dot architectures. , 2011, Nano letters.

[4]  R. Martoňák,et al.  Atomistic simulations of pressure-induced structural transformations in solids , 2011 .

[5]  T. Vlugt,et al.  Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations. , 2010, Nano letters.

[6]  A. Kushwaha,et al.  Phonon spectrum and thermal properties of semiconducting compounds ZnS and ZnSe , 2010 .

[7]  R. Martoňák,et al.  The wurtzite to rock salt transition in CdSe: A comparison between molecular dynamics and metadynamics simulations , 2010 .

[8]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.

[9]  P. Chu,et al.  Raman scattering study of zinc blende and wurtzite ZnS , 2009 .

[10]  C. Dellago,et al.  Transition state analysis of solid-solid transformations in nanocrystals. , 2009, The Journal of chemical physics.

[11]  Christoph Dellago,et al.  Nucleation and growth in structural transformations of nanocrystals. , 2009, Nano letters.

[12]  R. Martoňák,et al.  Pressure-induced structural phase transitions in CdSe: a metadynamics study. , 2009, The Journal of chemical physics.

[13]  M. Durandurdu Pressure-induced phase transition in wurtzite ZnS: An ab initio constant pressure study , 2009 .

[14]  C. Vega,et al.  What ice can teach us about water interactions: a critical comparison of the performance of different water models. , 2009, Faraday discussions.

[15]  M. Schmidt,et al.  Nanodomain fragmentation and local rearrangements in CdSe under pressure , 2008, Proceedings of the National Academy of Sciences.

[16]  C. Dellago,et al.  An efficient transition path sampling algorithm for nanoparticles under pressure. , 2007, The Journal of chemical physics.

[17]  Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals. , 2006, Physical review letters.

[18]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[19]  Christoph Dellago,et al.  Surface-driven bulk reorganization of gold nanorods. , 2005, Nano letters.

[20]  S. Leoni,et al.  Mechanism of the pressure-induced wurtzite to rocksalt transition of CdSe , 2005 .

[21]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[22]  H. Sowa On the mechanism of the pressure-induced wurtzite- to NaCl-type phase transition in CdS: an X-ray diffraction study , 2005 .

[23]  A. Alivisatos,et al.  Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals , 2002 .

[24]  E. Rabani An interatomic pair potential for cadmium selenide , 2002 .

[25]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[26]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[27]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[28]  R. Lerner,et al.  Activation Volumes for Solid-Solid Transformations in Nanocrystals , 2001, Science.

[29]  Christoph Dellago,et al.  Diffusion of isobutane in silicalite studied by transition path sampling , 2000 .

[30]  L. Beaulieu,et al.  Pressure-induced structural changes in ZnS , 2000 .

[31]  Alivisatos,et al.  Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals , 2000, Physical review letters.

[32]  M. Cardona,et al.  The phonon dispersion of wurtzite CdSe , 1999 .

[33]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[34]  Chen,et al.  Size Dependence of Structural Metastability in Semiconductor Nanocrystals , 1997, Science.

[35]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Julian D. Gale,et al.  Empirical potential derivation for ionic materials , 1996 .

[39]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[40]  Robert Allan Jackson,et al.  Computer simulation of the structure and defect properties of zinc sulfide , 1995 .

[41]  S. Tolbert,et al.  High-pressure structural transformations in semiconductor nanocrystals. , 1995, Annual review of physical chemistry.

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[43]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[44]  B. Bonello,et al.  Elastic constants of CdSe at low temperature , 1993 .

[45]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[46]  Zhao,et al.  Spectroscopic investigations of CdS at high pressure. , 1989, Physical review. B, Condensed matter.

[47]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[48]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[49]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[50]  Chandrasekhar,et al.  Low-temperature studies of the photoluminescence in CdS under hydrostatic pressure. , 1985, Physical review. B, Condensed matter.

[51]  Faraday Discuss , 1985 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[53]  M. Dixon,et al.  Interionic potentials in alkali halides and their use in simulations of the molten salts , 1976 .

[54]  W. Cochran,et al.  Lattice dynamics of ionic and covalent crystals , 1971 .

[55]  J. Birman,et al.  Lattice Dynamics of Wurtzite: CdS. II , 1970 .

[56]  James A. Corll,et al.  Effect of Pressure on the Elastic Parameters and Structure of CdS , 1967 .

[57]  P. L. Smith,et al.  X-ray diffraction at ultra-high pressures , 1963 .

[58]  A. Mariano,et al.  High Pressure Phases of Some Compounds of Groups II-VI , 1963, Science.

[59]  Don Berlincourt,et al.  Electroelastic Properties of the Sulfides, Selenides, and Tellurides of Zinc and Cadmium , 1963 .

[60]  H. G. Drickamer,et al.  Pressure induced phase transitions in some II–VI compounds , 1962 .

[61]  H. G. Drickamer,et al.  EFFECT OF PRESSURE ON THE ABSORPTION EDGES OF SOME III-V, II-VI, AND I-VII COMPOUNDS , 1961 .

[62]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.