Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells

Stable raftlike lipid domains form and segregate membrane proteins in the yeast vacuole in response to various stresses.

[1]  A. Kusumi,et al.  Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. , 1993, Biophysical journal.

[2]  Raphael Zidovetzki,et al.  Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. , 2007, Biochimica et biophysica acta.

[3]  P. Kane The Where, When, and How of Organelle Acidification by the Yeast Vacuolar H+-ATPase , 2006, Microbiology and Molecular Biology Reviews.

[4]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[5]  David J. Williamson,et al.  The lipid raft hypothesis revisited – New insights on raft composition and function from super‐resolution fluorescence microscopy , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[7]  T. Rapoport,et al.  The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae , 2012, The Journal of cell biology.

[8]  W. Wickner,et al.  Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles , 2004, The Journal of cell biology.

[9]  A. Mayer,et al.  Microautophagy of the Nucleus Coincides with a Vacuolar Diffusion Barrier at Nuclear–Vacuolar Junctions , 2010, Molecular biology of the cell.

[10]  Sheena C. Li,et al.  The yeast lysosome-like vacuole: endpoint and crossroads. , 2009, Biochimica et biophysica acta.

[11]  P. Kane,et al.  Vacuolar and Plasma Membrane Proton Pumps Collaborate to Achieve Cytosolic pH Homeostasis in Yeast* , 2008, Journal of Biological Chemistry.

[12]  D. Lingwood,et al.  Order of lipid phases in model and plasma membranes , 2009, Proceedings of the National Academy of Sciences.

[13]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[14]  N. Mueller,et al.  Patchwork organization of the yeast plasma membrane into numerous coexisting domains , 2012, Nature Cell Biology.

[15]  G. Daum,et al.  Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae , 1995, Yeast.

[16]  P. Schwille,et al.  Elucidating membrane structure and protein behavior using giant plasma membrane vesicles , 2012, Nature Protocols.

[17]  Ronald D. Vale,et al.  Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells , 2005, Cell.

[18]  P. Piper,et al.  Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives , 2008, Yeast.

[19]  W. Webb,et al.  GUV preparation and imaging: minimizing artifacts. , 2010, Biochimica et biophysica acta.

[20]  L. Pike Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006. , 2006, Journal of Lipid Research.

[21]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[22]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[23]  W. Wickner,et al.  Ergosterol is required for the Sec18/ATP‐dependent priming step of homotypic vacuole fusion , 2001, The EMBO journal.

[24]  R. Schneiter,et al.  Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane , 1999, The Journal of cell biology.

[25]  F. Karst,et al.  In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property , 1990, Antimicrobial Agents and Chemotherapy.

[26]  T. Maeda The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi , 2012, The FEBS journal.

[27]  Sushmita Mukherjee,et al.  Membrane domains. , 2004, Annual review of cell and developmental biology.

[28]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[29]  K. Gaus,et al.  Quantitative imaging of membrane lipid order in cells and organisms , 2011, Nature Protocols.

[30]  E. London,et al.  Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[32]  Juha-Pekka Pitkänen,et al.  On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture , 2011 .

[33]  M. A. Surma,et al.  Molecular Convergence of Bacterial and Eukaryotic Surface Order* , 2011, The Journal of Biological Chemistry.

[34]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[35]  Frederick A. Heberle,et al.  Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Armstrong Yeast vacuoles: more than a model lysosome. , 2010, Trends in cell biology.