Coupling of IGA and Peridynamics for Air-Blast Fluid-Structure Interaction Using an Immersed Approach

We present a novel formulation based on an immersed coupling of Isogeometric Analysis (IGA) and Peridynamics (PD) for the simulation of fluid-structure interaction (FSI) phenomena for air blast. We aim to develop a practical computational framework that is capable of capturing the mechanics of air blast coupled to solids and structures that undergo large, inelastic deformations with extreme damage and fragmentation. An immersed technique is used, which involves an a priori monolithic FSI formulation with the implicit detection of the fluid-structure interface and without limitations on the solid domain motion. The coupled weak forms of the fluid and structural mechanics equations are solved on the background mesh. Correspondence-based PD is used to model the meshfree solid in the foreground domain. We employ the Non-Uniform Rational B-Splines (NURBS) IGA functions in the background and the Reproducing Kernel Particle Method (RKPM) functions for the PD solid in the foreground. We feel that the combination of these numerical tools is particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of IGA and RKPM, the benefits of using immersed methodology in handling the fluid-structure coupling, and the capabilities of PD in simulating fracture and fragmentation scenarios. Numerical examples are provided to illustrate the performance of the proposed air-blast FSI framework.

[1]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[2]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[3]  Shaofan Li,et al.  Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics , 2020, Computational Particle Mechanics.

[4]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[5]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[6]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[7]  S. Oterkus,et al.  Peridynamic Modelling of Fracture in Polycrystalline Ice , 2020 .

[8]  Guillermo Hauke,et al.  Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .

[9]  Ming-Chen Hsu,et al.  An immersogeometric formulation for free-surface flows with application to marine engineering problems , 2020 .

[10]  K. M. Liew,et al.  A smoothed particle hydrodynamics–peridynamics coupling strategy for modeling fluid–structure interaction problems , 2020 .

[11]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[12]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[13]  Sheng-Wei Chi,et al.  A gradient reproducing kernel collocation method for boundary value problems , 2013 .

[14]  B. Schrefler,et al.  Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media , 2020, Computer Methods in Applied Mechanics and Engineering.

[15]  T. J. Vogler,et al.  Peridynamics Modeling of a Shock Wave Perturbation Decay Experiment in Granular Materials with Intra-granular Fracture , 2018, Journal of Dynamic Behavior of Materials.

[16]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[17]  Eugenio Oñate,et al.  A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations , 2017 .

[18]  Masoud Behzadinasab,et al.  Peridynamic modeling of large deformation and ductile fracture , 2019 .

[19]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[20]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[21]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[22]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[23]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[24]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[25]  F. Bobaru,et al.  A peridynamic model for brittle damage and fracture in porous materials , 2019, International Journal of Rock Mechanics and Mining Sciences.

[26]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[27]  Yuri Bazilevs,et al.  A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations , 2017 .

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[29]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[30]  Nik Abdullah Nik Mohamed,et al.  Viscoelastic material models in peridynamics , 2013, Appl. Math. Comput..

[31]  Mi G. Chorzepa,et al.  Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework , 2017 .

[32]  Marco Pasetto,et al.  Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation , 2020, Computational Particle Mechanics.

[33]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[34]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[35]  Erdogan Madenci,et al.  Predicting crack propagation with peridynamics: a comparative study , 2011 .

[36]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[37]  John T. Foster,et al.  The third Sandia Fracture Challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal , 2019, International Journal of Fracture.

[38]  Yuri Bazilevs,et al.  Consistent immersed volumetric Nitsche methods for composite analysis , 2021 .

[39]  Erdogan Madenci,et al.  Peridynamic differential operator and its applications , 2016 .

[40]  J. Foster,et al.  Revisiting the third Sandia Fracture Challenge: a bond-associated, semi-Lagrangian peridynamic approach to modeling large deformation and ductile fracture , 2020, International Journal of Fracture.

[41]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[42]  Erkan Oterkus,et al.  Fully coupled poroelastic peridynamic formulation for fluid-filled fractures , 2017 .

[43]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[44]  Yuri Bazilevs,et al.  A General-Purpose, Inelastic, Rotation-Free Kirchhoff-Love Shell Formulation for Peridynamics , 2021, Computer Methods in Applied Mechanics and Engineering.

[45]  Kaushik Dayal,et al.  Bond-level deformation gradients and energy averaging in peridynamics , 2018 .

[46]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[47]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[48]  Sahir N. Butt,et al.  Peridynamic analysis of dynamic fracture: influence of peridynamic horizon, dimensionality and specimen size , 2021, Computational Mechanics.

[49]  Y. Bazilevs,et al.  Hyperbolic phase field modeling of brittle fracture: Part II—immersed IGA–RKPM coupling for air-blast–structure interaction , 2018, Journal of the Mechanics and Physics of Solids.

[50]  Ziguang Chen,et al.  Peridynamic Modeling of Intergranular Corrosion Damage , 2018 .

[51]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[52]  Li-ping Li,et al.  Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation , 2020 .

[53]  Mukul M. Sharma,et al.  A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach , 2015 .

[54]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[55]  C. C. Long,et al.  IGA-MPM: The Isogeometric Material Point Method , 2020 .

[56]  Yuri Bazilevs,et al.  A Unified, Stable and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part I: Core Methods , 2020, Journal of Peridynamics and Nonlocal Modeling.

[57]  John T. Foster,et al.  A semi-Lagrangian constitutive correspondence framework for peridynamics , 2020 .

[58]  John T. Foster,et al.  Dynamic crack initiation toughness : experiments and peridynamic modeling. , 2009 .

[59]  James W. Foulk,et al.  The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal , 2019, International Journal of Fracture.

[60]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[61]  S. Oterkus,et al.  Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator , 2020 .

[62]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[63]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[64]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[65]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .