Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths.

We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO(2)) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10(-18) m(2)/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm(-1) Raman line of anatase with a gain coefficient of 6.6 × 10(-12) m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO(2) make it a promising material for integrated photonics.

[1]  E. Portuondo-Campa,et al.  Ultrafast nonresonant response of TiO2 nanostructured films. , 2008, The Journal of chemical physics.

[2]  J. W. Hall,et al.  Near-infrared spectrophotometry: a new dimension in clinical chemistry. , 1992, Clinical chemistry.

[3]  Vladimir S. Ilchenko,et al.  Kerr combs with selectable central frequency , 2011 .

[4]  Sylvain Combrié,et al.  High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption , 2009 .

[5]  R A Wilson,et al.  Wavelength conversion in GaAs micro-ring resonators. , 2000, Optics letters.

[6]  Hua Long,et al.  Third-order optical nonlinearities in anatase and rutile TiO2 thin films , 2009 .

[7]  Brian S. Wherrett,et al.  Scaling rules for multiphoton interband absorption in semiconductors , 1984 .

[8]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[9]  M. Sorel,et al.  Ultra-low power generation of twin photons in a compact silicon ring resonator. , 2012, Optics express.

[10]  P. Liao,et al.  Quantum Electronics—Principles and Applications , 1993 .

[11]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[12]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[13]  Michal Lipson,et al.  Silicon-based monolithic optical frequency comb source. , 2011, Optics express.

[14]  A. Locatelli,et al.  Enhanced third-order nonlinear effects in optical AlGaAs nanowires. , 2006, Optics express.

[15]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[16]  M. Lipson,et al.  Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. , 2007, Optics express.

[17]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[18]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[19]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[20]  Eric Mazur,et al.  Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm. , 2012, Optics express.

[21]  M. Pollnau,et al.  Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Limiting nature of continuum generation in silicon , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[23]  W. Seeber,et al.  Highly efficient THG in TiO2 nanolayers for third-order pulse characterization. , 2011, Optics express.

[24]  Alexander Gaeta,et al.  Optimal waveguide dimensions for nonlinear interactions. , 2004, Optics express.

[25]  Payne,et al.  Nonlinear refractive index of optical crystals. , 1989, Physical review. B, Condensed matter.

[26]  G. Oskam,et al.  Phase-pure TiO2 nanoparticles: anatase, brookite and rutile , 2008, Nanotechnology.

[27]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[28]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[29]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[30]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[31]  Eric Mazur,et al.  Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. , 2012, Optics express.

[32]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[33]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[34]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[35]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[36]  A. Villringer,et al.  Beyond the Visible—Imaging the Human Brain with Light , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[37]  R. Quintero-Torres,et al.  Ultrafast nonlinear optical properties of TiO2 nanoclusters at 850 nm , 2010 .

[38]  George I. Stegeman,et al.  Material figures of merit and implications to all-optical waveguide switching , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[39]  B J Eggleton,et al.  Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. , 2010, Optics express.

[40]  T. Yoko,et al.  Sol–Gel Preparation and Third-Order Nonlinear Optical Properties of TiO2 Thin Films , 1994 .

[41]  Study of nonlinear optical effects in silicon waveguides , 2009 .

[42]  Eric Mazur,et al.  Integrated TiO2 resonators for visible photonics. , 2011, Optics letters.

[43]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[44]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[45]  Yurii A. Vlasov,et al.  Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires , 2009 .

[46]  Hagan,et al.  Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. , 1990, Physical review letters.

[47]  M. Dinu,et al.  Dispersion of phonon-assisted nonresonant third-order nonlinearities , 2003 .

[48]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[49]  J. S. Aitchison,et al.  The nonlinear optical properties of AlGaAs at the half band gap , 1997 .