Stochastic Algorithms in Linear Algebra - beyond the Markov Chains and von Neumann - Ulam Scheme
暂无分享,去创建一个
[1] Sean McKee,et al. Monte Carlo Methods for Applied Scientists , 2005 .
[2] Jitendra Malik,et al. Spectral Partitioning with Inde nite Kernels using the Nystr om Extension , 2002 .
[3] Karl K. Sabelfeld. Monte Carlo Methods in Boundary Value Problems. , 1991 .
[4] Petros Drineas,et al. An Experimental Evaluation of a Monte-Carlo Algorithm for Singular Value Decomposition , 2001, Panhellenic Conference on Informatics.
[5] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[6] Karl K. Sabelfeld,et al. Random Walk on Fixed Spheres for Laplace and Lamé equations , 2006, Monte Carlo Methods Appl..
[7] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[8] Aneta Karaivanova,et al. Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems , 2008 .
[9] Christopher K. I. Williams,et al. Unsupervised Learning of Multiple Aspects of Moving Objects from Video , 2005, Panhellenic Conference on Informatics.
[10] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[11] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[12] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[13] Ivan Tomov Dimov,et al. Monte Carlo Numerical Treatment of Large Linear Algebra Problems , 2007, International Conference on Computational Science.
[14] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[15] PDEsK. K. Sabelfeld. Expansion of random boundary ex itations for ellipti , 2007 .
[16] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[17] C. Eckart,et al. A principal axis transformation for non-hermitian matrices , 1939 .
[18] Jack Dongarra,et al. Computational Science - ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part III , 2007, ICCS.
[19] G. W. Stewart,et al. On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..
[20] Mads Nielsen,et al. Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.
[21] M. Kobayashi,et al. Estimation of singular values of very large matrices using random sampling , 2001 .
[22] Petros Drineas,et al. Pass efficient algorithms for approximating large matrices , 2003, SODA '03.
[23] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[24] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[25] K. Phoon,et al. Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .
[26] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[27] K. Sabelfeld,et al. Random Walks on Boundary for Solving PDEs , 1994 .
[28] Gene H. Golub,et al. Matrix computations , 1983 .
[29] Petros Drineas,et al. Fast Monte-Carlo algorithms for approximate matrix multiplication , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[30] Neil Muller,et al. Singular Value Decomposition, Eigenfaces, and 3D Reconstructions , 2004, SIAM Rev..
[31] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[32] Karl K. Sabelfeld,et al. Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method , 2009, Monte Carlo Methods Appl..
[33] John S. Allen. An Introductory Course , 1935 .
[34] Karl K. Sabelfeld,et al. Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation , 2011, Math. Comput. Simul..
[35] Vera Pawlowsky-Glahn,et al. Statistical Modeling , 2007, Encyclopedia of Social Network Analysis and Mining.
[36] G. Strang. The Fundamental Theorem of Linear Algebra , 1993 .
[37] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[38] Dimitris Achlioptas,et al. Fast computation of low-rank matrix approximations , 2007, JACM.
[39] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[40] Erich Kaltofen,et al. On randomized Lanczos algorithms , 1997, ISSAC.
[41] Bernard Chazelle,et al. The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..
[42] A. J. Walker. New fast method for generating discrete random numbers with arbitrary frequency distributions , 1974 .
[43] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..