Making sense of palaeoclimate sensitivity

Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W−1 m2) of 0.3–1.9 or 0.6–1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2–4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.

[1]  E. Rohling Progress in paleosalinity: Overview and presentation of a new approach , 2007 .

[2]  J. Fasullo,et al.  Constraints on Climate Sensitivity from Radiation Patterns in Climate Models , 2011 .

[3]  Makiko Sato,et al.  Climate change and trace gases , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Peter John Huybers,et al.  Antarctic temperature at orbital timescales controlled by local summer duration , 2008 .

[5]  D. Lea The 100 000-Yr Cycle in Tropical SST, Greenhouse Forcing, and Climate Sensitivity , 2004 .

[6]  D. Beerling,et al.  Fossil Plants as Indicators of the Phanerozoic Global Carbon Cycle , 2002 .

[7]  M. Weinelt,et al.  Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum: report of the MARGO Project , 2009 .

[8]  T. Delworth,et al.  Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing , 2010 .

[9]  B. Mcavaney,et al.  Climate feedbacks under a very broad range of forcing , 2009 .

[10]  K. Miller,et al.  Visions of ice sheets in a greenhouse world , 2005 .

[11]  Jonathan M. Gregory,et al.  Transient climate response estimated from radiative forcing and observed temperature change , 2008 .

[12]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[13]  G. Haug,et al.  Strengthening of North American dust sources during the late Pliocene (2.7 Ma) , 2012 .

[14]  Johannes Oerlemans,et al.  Modelled atmospheric temperatures and global sea levels over the past million years , 2005, Nature.

[15]  H. Held,et al.  How cold was the Last Glacial Maximum? , 2006 .

[16]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[17]  N. Mahowald,et al.  Model insight into glacial–interglacial paleodust records , 2011 .

[18]  J. Dufresne,et al.  Why climate sensitivity may not be so unpredictable , 2009 .

[19]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[20]  Thure E. Cerling,et al.  Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic Paleosols , 1991 .

[21]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[22]  Peter Huybers,et al.  Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing , 2006, Science.

[23]  E. Guilyardi,et al.  Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints , 2006 .

[24]  Makiko Sato,et al.  Paleoclimate Implications for Human-Made Climate Change , 2011, 1105.0968.

[25]  P. Huybers Compensation between Model Feedbacks and Curtailment of Climate Sensitivity , 2010 .

[26]  D. Beerling,et al.  Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic , 2012, Geobiology.

[27]  F. Joos,et al.  Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years , 2008, Proceedings of the National Academy of Sciences.

[28]  B. Boer,et al.  Reconstruction of a continuous high-resolution CO 2 record over the past 20 million years , 2011 .

[29]  Taro Takahashi,et al.  Climate processes and climate sensitivity , 1984 .

[30]  M. Hoffert,et al.  Paleoclimate data constraints on climate sensitivity: The paleocalibration method , 1996 .

[31]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[32]  M. Lavine,et al.  Meta‐analysis of tropical surface temperatures during the Last Glacial Maximum , 2005 .

[33]  M. Huber,et al.  Climate of the Past Discussions , 2005 .

[34]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[35]  M. Ghil,et al.  Another look at climate sensitivity , 2010, 1003.0253.

[36]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[37]  J. Hayes,et al.  Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. , 1992, Global biogeochemical cycles.

[38]  P. Valdes,et al.  Enhanced chemistry-climate feedbacks in past greenhouse worlds , 2011, Proceedings of the National Academy of Sciences.

[39]  M. Kageyama,et al.  Impact of Greenhouse Gas Concentration Changes on Surface Energetics in IPSL-CM4: Regional Warming Patterns, Land–Sea Warming Ratios, and Glacial–Interglacial Differences , 2009 .

[40]  Inez Y. Fung,et al.  Climate Sensitivity: Analysis of Feedback Mechanisms , 2013 .

[41]  A. Lotter,et al.  Eustatic variations during the Paleocene‐Eocene greenhouse world , 2008 .

[42]  C. Wunsch,et al.  How long to oceanic tracer and proxy equilibrium , 2008 .

[43]  J. S. Sinninghe Damsté,et al.  Transient Middle Eocene Atmospheric CO2 and Temperature Variations , 2010, Science.

[44]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[45]  M. Siddall,et al.  Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition , 2009, Science.

[46]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[47]  M. Crucifix,et al.  Using the past to constrain the future: how the palaeorecord can improve estimates of global warming , 2007, 1204.4807.

[48]  James D. Annan,et al.  Linking glacial and future climates through an ensemble of GCM simulations , 2006 .

[49]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[50]  N. Mahowald,et al.  Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum , 2011, Science.

[51]  Robert A. Berner,et al.  A model for atmospheric CO 2 over Phanerozoic time , 1991 .

[52]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[53]  Curt Covey,et al.  Deriving global climate sensitivity from palaeoclimate reconstructions , 1992, Nature.

[54]  J. Steffensen,et al.  Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period , 2003 .

[55]  Mike Lockwood,et al.  SOLAR INFLUENCES ON CLIMATE , 2009 .

[56]  C. Waelbroecka,et al.  Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records , 2001 .

[57]  A. Roberts,et al.  Atmospheric dust variability from Arabia and China over the last 500,000 years , 2011 .

[58]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[59]  D. Beerling,et al.  Convergent Cenozoic CO2 history , 2011 .

[60]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[61]  D. Pollard,et al.  Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years , 2012 .

[62]  Jeffrey Park,et al.  Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity , 2011, American Journal of Science.

[63]  G. Roe,et al.  The Shape of Things to Come: Why Is Climate Change So Predictable? , 2009 .

[64]  M. Siddall,et al.  Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles , 2011 .

[65]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[66]  A. L. BERGER,et al.  Support for the astronomical theory of climatic change , 1977, Nature.

[67]  Eelco J. Rohling,et al.  Antarctic temperature and global sea level closely coupled over the past five glacial cycles , 2009 .

[68]  G. Dickens,et al.  A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. , 1997, Geology.

[69]  Margo Project Members Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum , 2009 .

[70]  John Z. Imbrie,et al.  Modeling the Climatic Response to Orbital Variations , 1980, Science.

[71]  Robert V. Demicco,et al.  Elevated Eocene Atmospheric CO2 and Its Subsequent Decline , 2006, Science.

[72]  Paul J. Valdes,et al.  Earth system sensitivity inferred from Pliocene modelling and data , 2010 .

[73]  P. Barrett,et al.  Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history , 2011 .

[74]  A. Ridgwell,et al.  Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison , 2008 .

[75]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[76]  R. Knutti,et al.  Constraints on the transient climate response from observed global temperature and ocean heat uptake , 2008 .

[77]  R. V. D. Wal,et al.  Transient nature of the Earth's climate and the implications for the interpretation of benthic δ18 O records , 2012 .

[78]  Eric J. Barron,et al.  A comparison of Eocene climate model results to quantified paleoclimatic interpretations , 1992 .

[79]  J. Zachos,et al.  Astronomical pacing of late Palaeocene to early Eocene global warming events , 2005, Nature.

[80]  J. Hansen,et al.  The ice-core record: climate sensitivity and future greenhouse warming , 1990, Nature.

[81]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[82]  F. Joos,et al.  What caused Earths temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity , 2009 .

[83]  David McGee,et al.  Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica , 2008, Science.

[84]  D. Lemoine,et al.  Climate Sensitivity Distributions Dependence on the Possibility that Models Share Biases , 2010 .

[85]  D. Beerling,et al.  Convergent Cenozoic CO 2 history , 2011 .

[86]  P. Köhler,et al.  Supplemental Material for : Abrupt rise in atmospheric CO 2 at the onset of the Bølling / Allerød : in-situ ice core data versus true atmospheric signals , 2011 .

[87]  W. Landman Climate change 2007: the physical science basis , 2010 .

[88]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[89]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[90]  Andy Ridgwell,et al.  Are there pre-Quaternary geological analogues for a future greenhouse warming? , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  G. Schmidt,et al.  On the causes of mid-Pliocene warmth and polar amplification , 2012 .

[92]  G. Roe,et al.  Feedbacks, Timescales, and Seeing Red , 2009 .

[93]  Michel Crucifix,et al.  Does the Last Glacial Maximum constrain climate sensitivity? , 2006 .

[94]  J. Zachos,et al.  Evolution of Early Cenozoic marine temperatures , 1994 .

[95]  T. Stocker,et al.  Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years , 2010 .

[96]  André Berger,et al.  Climate Change: Inferences from Paleoclimate and Regional Aspects , 2012 .

[97]  J. Zachos,et al.  Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.

[98]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.