Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control.

[1]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[2]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[3]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[4]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[5]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[6]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[7]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[8]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[9]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[10]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[11]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[12]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[13]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[14]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[15]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[16]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[17]  F. Kang,et al.  Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries , 2009 .

[18]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[19]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[20]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[21]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[22]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[23]  F. D’Souza,et al.  Oxoporphyrinogens: From Redox and Spectroscopic Probe for Anion Sensing to a Platform for Construction of Supramolecular Donor-Acceptor Conjugates , 2008 .

[24]  M. Verbrugge,et al.  Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction , 2008 .

[25]  M. Armand,et al.  Building better batteries , 2008, Nature.

[26]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[27]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[28]  K. Möller,et al.  Monitoring dynamics of electrode reactions in Li-ion batteries by in situ ESEM , 2006 .

[29]  C. M. Lepienski,et al.  Residual stress determination on lithium disilicate glass-ceramic by nanoindentation , 2004 .

[30]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[31]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[32]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[33]  F. E. Little,et al.  Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures , 2004 .

[34]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[37]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[38]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[39]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .