Design of Optimal Fractional-Order PID Controllers Using Particle Swarm Optimization Algorithm for Automatic Voltage Regulator (AVR) System

In practical applications, the pure derivative action is never used, due to the “derivative kick” produced in the control signal for a step input, and to the undesirable noise amplification. It is usually replaced by a first-order low-pass filter. In this paper, we use a $$\mu $$μ-order fractional low-pass filter and define a practical fractional-order controller. The proposed approach with new defined fitness function has very easy implementation and the most control performance. We present a method for optimum tuning of practical fractional PID controllers for automatic voltage regulator system using particle swarm optimization (PSO) algorithm. PSO is a robust stochastic optimization technique based on the movement and intelligence of swarm, applies the concept of social interaction to problem solving. From the comparison this technique with the other methods, its influence and efficiency are illustrated. Simulations and comparisons with other FOPID/PID controllers illustrate that the proposed PSO-FOPID controller can provide good control performance with respect to reference input and also improve the system robustness with respect to model uncertainties.

[1]  Ching-Chang Wong,et al.  Optimal PID Controller Design for AVR System , 2009 .

[2]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[3]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[4]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[5]  I. Kostial,et al.  State-Space Controller Design for the Fractional-Order Regulated System , 2002 .

[6]  L. A. Belyaev,et al.  METHOD FOR DESIGNING , 1970 .

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[9]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[10]  Goga Cvetkovski,et al.  Efficiency Improvement of Axial Flux PM Motor Using Particle Swarm Optimisation , 2013 .

[11]  José António Tenreiro Machado,et al.  Fractional differentiation and its applications I , 2013, Comput. Math. Appl..

[12]  Ajith Abraham,et al.  Design of fractional order PIλDμ controllers with an improved differential evolution , 2008, GECCO '08.

[13]  Zafer Bingul,et al.  Tuning of fractional PID controllers using PSO algorithm for robot trajectory control , 2011, 2011 IEEE International Conference on Mechatronics.

[14]  M. C. Taplamacioglu,et al.  APPLICATION OF ARTIFICIAL BEES COLONY ALGORITHM IN AN AUTOMATIC VOLTAGE REGULATOR ( AVR ) SYSTEM , 2011 .

[15]  C. Yeroglu,et al.  Note on fractional-order proportional–integral–differential controller design , 2011 .

[16]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[17]  Lixiang Li,et al.  Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm , 2012, Expert Syst. Appl..

[18]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[19]  I. Petráš Fractional Order Systems , 2011 .

[20]  Hosam K. M. Youssef,et al.  Modified Evolutionary Particle Swarm Optimization for AVR-PID tuning , 2008 .

[21]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[22]  Kaamran Raahemifar,et al.  Optimal PID controller design for AVR system using particle swarm optimization algorithm , 2011, 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE).

[23]  C. Lubich Discretized fractional calculus , 1986 .

[24]  Saptarshi Das,et al.  Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system , 2012, ArXiv.

[25]  D. Valerio,et al.  Rule-based fractional control of an irrigation canal , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[26]  S. Das Functional Fractional Calculus , 2011 .

[27]  Alain Oustaloup,et al.  Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation , 1981 .

[28]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[29]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[30]  Haluk Gozde,et al.  Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system , 2011, J. Frankl. Inst..

[31]  Leandro dos Santos Coelho,et al.  Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach , 2009 .

[32]  Masoud Karimi-Ghartemani,et al.  Method for designing PI λ D μ stabilisers for minimum-phase fractional-order systems , 2010 .

[33]  Yangquan Chen,et al.  Fractional Calculus and Biomimetic Control , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[34]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[35]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[36]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[37]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[38]  Saptarshi Das,et al.  Intelligent Fractional Order Systems and Control - An Introduction , 2012, Studies in Computational Intelligence.

[39]  Y. Chen,et al.  Design, implementation and application of distributed order PI control. , 2013, ISA transactions.

[40]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[41]  Saptarshi Das,et al.  Frequency Domain Design of Fractional Order PID Controller for AVR System Using Chaotic Multi-objective Optimization , 2013, ArXiv.

[42]  Ying Luo,et al.  Lateral directional fractional order (PI) π control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests , 2011 .

[43]  Renato A. Krohling,et al.  Design of optimal disturbance rejection PID controllers using genetic algorithms , 2001, IEEE Trans. Evol. Comput..

[44]  Duarte Valério,et al.  Introduction to single-input, single-output fractional control , 2011 .

[45]  Y. Chen,et al.  Experimental study of fractional order proportional derivative controller synthesis for fractional order systems , 2011 .

[46]  D. Devaraj,et al.  Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional-integral - derivative controller in automatic voltage regulator system , 2009 .

[47]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[48]  G. Shabib,et al.  Optimal tuning of PID controller for AVR system using modified particle swarm optimization , 2010 .

[49]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[50]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[51]  José António Tenreiro Machado,et al.  Effect of fractional orders in the velocity control of a servo system , 2010, Comput. Math. Appl..

[52]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.