Gangotri glacier dynamics from multi-sensor SAR and Optical data

[1]  A. P. Dimri,et al.  Knowledge Priorities on Climate Change and Water in the Upper Indus Basin: A Horizon Scanning Exercise to Identify the Top 100 Research Questions in Social and Natural Sciences , 2022, Earth's Future.

[2]  M. Azam Need of integrated monitoring on reference glacier catchments for future water security in Himalaya , 2021, Water Security.

[3]  P. Chauhan,et al.  Synergistic analysis of satellite, unmanned aerial vehicle, terrestrial laser scanner data and process-based modelling for understanding the dynamics and morphological changes around the snout of Gangotri Glacier, India , 2021, Geomorphology.

[4]  I. M. Bahuguna,et al.  Glaciohydrology of the Himalaya-Karakoram , 2021, Science.

[5]  M. A. Lone,et al.  Climate change and water resources of Himalayan region—review of impacts and implication , 2021, Arabian Journal of Geosciences.

[6]  Subodh Sharma,et al.  Melting Himalayan Glaciers Threaten Domestic Water Resources in the Mount Everest Region, Nepal , 2020, Frontiers in Earth Science.

[7]  T. Bolch,et al.  Importance and vulnerability of the world’s water towers , 2019, Nature.

[8]  Gulab Singh,et al.  Spatial distribution of decadal ice-thickness change and glacier stored water loss in the Upper Ganga basin, India during 2000–2014 , 2019, Scientific Reports.

[9]  Emmanuel Trouvé,et al.  Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia , 2018, Nature Geoscience.

[10]  A. Bhardwaj,et al.  Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya , 2018, Acta Geophysica.

[11]  E. Berthier,et al.  Review of the status and mass changes of Himalayan-Karakoram glaciers , 2018, Journal of Glaciology.

[12]  Anil V. Kulkarni,et al.  Quantifying Changes in the Gangotri Glacier of Central Himalaya: Evidence for Increasing Mass Loss and Decreasing Velocity , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  V. Garg,et al.  Cryospheric Studies in Indian Himalayan and Polar Region: Current Status, Advances and Future Prospects of Remote Sensing , 2017 .

[14]  Gerhard Krieger,et al.  Generation and performance assessment of the global TanDEM-X digital elevation model , 2017 .

[15]  Ankur Pandit,et al.  How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment , 2016 .

[16]  S. P. Satyabala Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: Study using synthetic aperture radar data , 2016 .

[17]  Avik Bhattacharya,et al.  Mass change of Gangotri glacier based on TanDEM-X measurements , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[18]  A. Senthil Kumar,et al.  Ice sheet features identification, glacier velocity estimation, and glacier zones classification using high-resolution optical and SAR data , 2016, Asia-Pacific Remote Sensing.

[19]  Anil V. Kulkarni,et al.  Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods , 2014 .

[20]  Eric J. Fielding,et al.  Recent changes in the snout position and surface velocity of Gangotri glacier observed from space , 2013 .

[21]  Gopalan Venkataraman,et al.  Estimation and validation of glacier surface motion in the northwestern Himalayas using high-resolution SAR intensity tracking , 2013 .

[22]  T. Bolch,et al.  Ice Volume and Subglacial Topography for Western Canadian Glaciers from Mass Balance Fields, Thinning Rates, and a Bed Stress Model , 2013 .

[23]  Snehmani,et al.  Monitoring of Gangotri glacier using remote sensing and ground observations , 2012, Journal of Earth System Science.

[24]  Frank Paul,et al.  Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM , 2012, Int. J. Geogr. Inf. Sci..

[25]  T. Bolch,et al.  The State and Fate of Himalayan Glaciers , 2012, Science.

[26]  Manoj K. Arora,et al.  Usefulness of synthetic aperture radar (SAR) interferometry for digital elevation model (DEM) generation and estimation of land surface displacement in Jharia coal field area , 2012 .

[27]  Ashkan Farokhnia,et al.  Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran) , 2012 .

[28]  Andreas Kääb,et al.  Glacier displacement on Comfortlessbreen, Svalbard, using 2-pass differential SAR interferometry (DInSAR) with a digital elevation model , 2011, Polar Record.

[29]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[30]  Ian Joughin,et al.  Glaciological advances made with interferometric synthetic aperture radar , 2010, Journal of Glaciology.

[31]  Georg Kaser,et al.  Contribution potential of glaciers to water availability in different climate regimes , 2010, Proceedings of the National Academy of Sciences.

[32]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[33]  Renaud Mathieu,et al.  Detecting the equilibrium‐line altitudes of New Zealand glaciers using ASTER satellite images , 2009 .

[34]  Birgit Wessel,et al.  TanDEM-X DEM calibration: Correction of systematic DEM errors by block adjustment , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[35]  E. Berthier,et al.  Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume , 2009 .

[36]  A. Bauder,et al.  An estimate of the glacier ice volume in the Swiss Alps , 2008 .

[37]  S. Leprince,et al.  Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment , 2008 .

[38]  Craig S. Lingle,et al.  Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques , 2008 .

[39]  A. Bauder,et al.  Modelling runoff from highly glacierized alpine drainage basins in a changing climate , 2008 .

[40]  S. Hensley,et al.  Radar interferometry , 2008, 2008 IEEE Radar Conference.

[41]  William F. Manley,et al.  Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes , 2007 .

[42]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[43]  W. T. Pfeffer,et al.  Two modes of accelerated glacier sliding related to water , 2007 .

[44]  Sébastien Leprince,et al.  Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[45]  U. Haritashya,et al.  Meteorological Study for Gangotri Glacier and Its Comparison with Other High Altitude Meteorological Stations in Central Himalayan Region , 2007 .

[46]  Anil V. Kulkarni,et al.  Glacial retreat in Himalaya using Indian remote sensing satellite data , 2006, SPIE Asia-Pacific Remote Sensing.

[47]  Umesh K. Haritashya,et al.  Hydrological characteristics of the Gangotri Glacier, central Himalayas, India , 2006 .

[48]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[49]  Dan Johan Weydahl,et al.  Mapping glacier velocities on Svalbard using ERS tandem DInSAR data , 2005 .

[50]  Siri Jodha Singh Khalsa,et al.  Space-based mapping of glacier changes using ASTER and GIS tools , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[51]  S. P. Anderson,et al.  Strong feedbacks between hydrology and sliding of a small alpine glacier , 2004 .

[52]  Andrew G. Fountain,et al.  Water flow through temperate glaciers , 1998 .

[53]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[54]  I. Willis Intra-annual variations in glacier motion: a review , 1995 .

[55]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[56]  D. Nuesch,et al.  Baseline modelling for ERS-1 SAR interferometry , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[57]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  A. Kulkarni,et al.  Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India , 2014, Journal of Glaciology.

[59]  Y. S. Rao,et al.  Generation and Validation of the Interferometric SAR DEMs from TanDEM-X data for Gangotri and Hamtah Glaciers of Indian Himalayas , 2014 .

[60]  Tobias Bolch,et al.  Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data , 2012 .

[61]  M. Truffer,et al.  Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA , 2012, Journal of Glaciology.

[62]  M. Hoelzle,et al.  The Swiss Alps without glaciers – a GIS-based modelling approach for reconstruction of glacier beds , 2009 .

[63]  A. Bauder,et al.  A method to estimate the ice volume and ice-thickness distribution of alpine glaciers , 2009 .

[64]  S. Jain Impact of retreat of Gangotri glacier on the flow of Ganga River , 2008 .

[65]  Kireet Kumar,et al.  Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey , 2008 .

[66]  Jeffrey S. Kargel,et al.  ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya , 2002, Annals of Glaciology.

[67]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[68]  A. Bauder,et al.  High-resolution measurements of spatial and temporal variations in surface velocities of Unteraargletscher, Bernese Alps, Switzerland , 2000, Annals of Glaciology.

[69]  Urs Wegmüller,et al.  Mapping wet snowcovers with SAR interferometry , 1999 .

[70]  Urs Wegmüller,et al.  Gamma SAR processor and interferometry software , 1997 .

[71]  M. Hoelzle,et al.  Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps , 1995, Annals of Glaciology.

[72]  A. Ohmura,et al.  Estimation of Alpine glacier water resources and their change since the 1870s , 1990 .

[73]  R. Bindschadler,et al.  Geometry and Dynamics of a Surge-type Glacier , 1977, Journal of Glaciology.