Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.

We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels.

[1]  S M Hagsäter,et al.  Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations. , 2007, Lab on a chip.

[2]  Henrik Bruus,et al.  Microfluidic capturing-dynamics of paramagnetic bead suspensions. , 2005, Lab on a chip.

[3]  Thomas Laurell,et al.  Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. , 2011, Lab on a chip.

[4]  Manoj Kumar,et al.  Fractionation of cell mixtures using acoustic and laminar flow fields. , 2005, Biotechnology and bioengineering.

[5]  M Wiklund,et al.  Selective bioparticle retention and characterization in a chip‐integrated confocal ultrasonic cavity , 2009, Biotechnology and bioengineering.

[6]  A. Gelb,et al.  The clinical importance of erythrocyte deformability, a hemorrheological parameter , 1992, Annals of Hematology.

[7]  H M Hertz,et al.  Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. , 2006, Lab on a chip.

[8]  H M Hertz,et al.  Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. , 2007, Ultrasound in medicine & biology.

[9]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[10]  Despina Bazou,et al.  Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. , 2005, Ultrasound in medicine & biology.

[11]  Thomas Laurell,et al.  Measuring the local pressure amplitude in microchannel acoustophoresis. , 2010, Lab on a chip.

[12]  Yang Liu,et al.  On-chip measurements of cell compressibility via acoustic radiation. , 2011, Lab on a chip.

[13]  Thomas Laurell,et al.  Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. , 2011, Lab on a chip.

[14]  Limaye,et al.  Clarification of small volume microbial suspensions in an ultrasonic standing wave , 1998, Journal of applied microbiology.

[15]  H. Bruus,et al.  Forces acting on a small particle in an acoustical field in a viscous fluid. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  H. Faxén Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist , 1922 .

[17]  K. Yosioka,et al.  Acoustic radiation pressure on a compressible sphere , 1955 .

[18]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[19]  B. Onfelt,et al.  Flow-free transport of cells in microchannels by frequency-modulated ultrasound. , 2009, Lab on a chip.

[20]  Martyn Hill,et al.  Spore and micro-particle capture on an immunosensor surface in an ultrasound standing wave system. , 2005, Biosensors & bioelectronics.

[21]  H M Hertz,et al.  Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. , 2003, Ultrasonics.

[22]  Acoustophoresis in shallow microchannels. , 2010, Journal of colloid and interface science.

[23]  L. Gor’kov,et al.  On the forces acting on a small particle in an acoustical field in an ideal fluid , 1962 .