Volcanic radiative forcing from 1979 to 2015 1

Boulder, CO 80307 8 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA NCAS-Climate, University of Reading, Reading, UK 9 Department of Meteorology, University of Reading, Reading, UK 10 National Centre for Earth Observation, United Kingdom 11 Met Office, FitzRoy Road, Exeter, EX1 3PB, UK 12 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK NOAA Earth Systems Research Laboratory (ESRL) Chemical Sciences Division, Boulder, Colorado, USA 13 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 14

[1]  Faryad Darabi Sahneh,et al.  Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. , 2018, Mathematical biosciences and engineering : MBE.

[2]  B. Martinsson,et al.  Volcanic impact on the climate – the stratospheric aerosol load in the period 2006–2015 , 2018, Atmospheric Chemistry and Physics.

[3]  Irene Cionni,et al.  Upper tropospheric ice sensitivity to sulfate geoengineering , 2017, Atmospheric Chemistry and Physics.

[4]  Loeb,et al.  Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product , 2018 .

[5]  Larry W. Thomason,et al.  A global space-based stratospheric aerosol climatology: 1979–2016 , 2017 .

[6]  T. Andrews,et al.  Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 , 2016 .

[7]  S. Carn,et al.  Satellite‐based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012 , 2016 .

[8]  R. Portmann,et al.  A Temporal Kernel Method to Compute Effective Radiative Forcing in CMIP5 Transient Simulations , 2016 .

[9]  A. Schmidt,et al.  VolcanEESM: Global volcanic sulphur dioxide (SO2) emissions database from 1850 to present , 2016 .

[10]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[11]  A. Lacis Volcanic Aerosol Radiative Properties , 2015 .

[12]  J. Vernier,et al.  Significant radiative impact of volcanic aerosol in the lowermost stratosphere , 2015, Nature Communications.

[13]  Thomas C. Peterson,et al.  Possible artifacts of data biases in the recent global surface warming hiatus , 2015, Science.

[14]  J. Marotzke,et al.  Forcing, feedback and internal variability in global temperature trends , 2015, Nature.

[15]  R. Knutti,et al.  Natural variability, radiative forcing and climate response in the recent hiatus reconciled , 2014 .

[16]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[17]  J. Haywood,et al.  The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2‐ES climate model , 2014 .

[18]  Gavin A. Schmidt,et al.  Reconciling warming trends , 2014 .

[19]  Kevin E. Trenberth,et al.  An apparent hiatus in global warming? , 2013 .

[20]  S. Ghan Technical Note: Estimating aerosol effects on cloud radiative forcing , 2013 .

[21]  Francis W. Zwiers,et al.  Overestimated global warming over the past 20 years , 2013 .

[22]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[23]  U. Lohmann,et al.  Climate Impacts of Cirrus Ice Nucleation , 2012 .

[24]  C. Timmreck,et al.  The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions , 2011 .

[25]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[26]  B. Kravitz,et al.  Climate effects of high-latitude volcanic eruptions: Role of the time of year , 2011 .

[27]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[28]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[29]  Piers M. Forster,et al.  Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations , 2006 .

[30]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[31]  J. Gregory,et al.  The Climate Sensitivity and Its Components Diagnosed from Earth Radiation Budget Data , 2005 .

[32]  Ulrike Lohmann,et al.  Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM , 2003 .

[33]  H. Roscoe The Risk of Large Volcanic Eruptions and the Impact of this Risk on Future Ozone Depletion , 2001 .

[34]  D. Pyle Mass and energy budgets of explosive volcanic eruptions , 1995 .

[35]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[36]  Owen B. Toon,et al.  The potential effects of volcanic aerosols on cirrus cloud microphysics , 1992 .

[37]  J. Hansen,et al.  Climate forcing by stratospheric aerosols , 1992 .

[38]  K. Sassen Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.

[39]  Servando Cruz-Reyna,et al.  Poisson-distributed patterns of explosive eruptive activity , 1991 .

[40]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .

[41]  W. A. Eggler Influence of Volcanic Eruptions on Xylem Growth Patterns , 1967 .