Structural plasticity of dendritic spines

[1]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[2]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[3]  P. Kanold,et al.  AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. , 2011, Journal of neurophysiology.

[4]  Christophe Zimmer,et al.  Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe , 2011, PloS one.

[5]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[6]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[7]  R. Yuste Dendritic Spines , 2010 .

[8]  R. Yasuda,et al.  AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[9]  H. C. Hartzell,et al.  ADF/Cofilin-Mediated Actin Dynamics Regulate AMPA Receptor Trafficking during Synaptic Plasticity , 2010, Nature Neuroscience.

[10]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[11]  T. Bonhoeffer,et al.  Imaging Living Synapses at the Nanoscale by STED Microscopy , 2010, The Journal of Neuroscience.

[12]  C. Hoogenraad,et al.  Actin in dendritic spines: connecting dynamics to function , 2010, The Journal of cell biology.

[13]  M. Segal,et al.  The Spine Apparatus, Synaptopodin, and Dendritic Spine Plasticity , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[14]  T. Soderling,et al.  Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways , 2010, Current Opinion in Neurobiology.

[15]  T. Svitkina,et al.  Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis , 2010, Molecular biology of the cell.

[16]  Yasunori Hayashi,et al.  The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? , 2009, Physiology.

[17]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[18]  M. Ehlers,et al.  Spine microdomains for postsynaptic signaling and plasticity. , 2009, Trends in cell biology.

[19]  C. Winters,et al.  Rapid turnover of spinules at synaptic terminals , 2009, Neuroscience.

[20]  Huilin Li,et al.  The Postsynaptic Density Proteins Homer and Shank Form a Polymeric Network Structure , 2009, Cell.

[21]  Thomas G. Oertner,et al.  Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII , 2008, Proceedings of the National Academy of Sciences.

[22]  M. Frerking,et al.  Spine Expansion and Stabilization Associated with Long-Term Potentiation , 2008, The Journal of Neuroscience.

[23]  Jun Noguchi,et al.  The Subspine Organization of Actin Fibers Regulates the Structure and Plasticity of Dendritic Spines , 2008, Neuron.

[24]  Qiang Zhou,et al.  Independent Expression of Synaptic and Morphological Plasticity Associated with Long-Term Depression , 2007, The Journal of Neuroscience.

[25]  M. Ehlers,et al.  Postsynaptic Positioning of Endocytic Zones and AMPA Receptor Cycling by Physical Coupling of Dynamin-3 to Homer , 2007, Neuron.

[26]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[27]  Yasunori Hayashi,et al.  The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure , 2007, Proceedings of the National Academy of Sciences.

[28]  Mriganka Sur,et al.  Effects of synaptic activity on dendritic spine motility of developing cortical layer v pyramidal neurons. , 2006, Cerebral cortex.

[29]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[30]  Yasunori Hayashi,et al.  Dendritic Spine Geometry: Functional Implication and Regulation , 2005, Neuron.

[31]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[32]  David A. Richards,et al.  Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Bliss,et al.  Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation(ltp): A serial section electron micrograph study in the dentate gyrus in the anaesthetised rat , 2004, Neuroscience.

[34]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[35]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[36]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[37]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[38]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[39]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Xiaobing Chen,et al.  Distribution of Postsynaptic Density (PSD)-95 and Ca2+/Calmodulin-Dependent Protein Kinase II at the PSD , 2003, The Journal of Neuroscience.

[41]  M. Ehlers,et al.  Dynamics and Regulation of Clathrin Coats at Specialized Endocytic Zones of Dendrites and Spines , 2002, Neuron.

[42]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[43]  G. Knott,et al.  Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice , 2002, Neuron.

[44]  J. Fiala,et al.  Dendritic spines do not split during hippocampal LTP or maturation , 2002, Nature Neuroscience.

[45]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[46]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[47]  R. Weinberg,et al.  Laminar Organization of the NMDA Receptor Complex within the Postsynaptic Density , 2001, The Journal of Neuroscience.

[48]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[49]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[51]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[52]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[53]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[54]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[55]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[56]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[57]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[58]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[59]  D. Rusakov,et al.  Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  R. K. S. Calverley,et al.  Contributions of dendritic spines and perforated synapses to synaptic plasticity , 1990, Brain Research Reviews.

[62]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  W. Levy,et al.  Changes in the numerical density of synaptic contacts with long‐term potentiation in the hippocampal dentate gyrus , 1986, The Journal of comparative neurology.

[64]  W B Levy,et al.  Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus , 1986, The Journal of comparative neurology.

[65]  E. A.,et al.  Actin in the nervous system , 1985 .

[66]  E. Fifková,et al.  Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer , 1981, Experimental Neurology.

[67]  E. Fifková,et al.  Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area , 1977, Journal of neurocytology.

[68]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[69]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[70]  K. Harris,et al.  Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus , 2007, Glia.

[71]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[72]  Kristen M. Harris,et al.  Erratum: Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation (J Neurosci (July 1992) 12 (2685-2705)) , 1992 .