Temperature Dependence of the Acoustic Deformation Potentials in CuInSe2 and CuInTe2

From the analysis of the variation of the energy gap with temperature and pressure in the chalcopyrite semiconducting compounds CuInSe2 and CuInTe2, the valence and conduction band acoustic deformation potentials are calculated as a function of temperature between 50 and 300 K. It is found that these parameters increase with temperature for both compounds. The results indicate, specially for CuInTe2, that the variation is important enough to be taken into account in the fit to the mobility data. Aus der Abhangigkeit der Energielucke von Temperatur und Druck werden fur die halbleitenden Verbindungen CuInSe2 und CuInTe2 die akustischen Deformationspotentiale fur Valenz- und Leitungs-band im Temperaturbereich zwischen 50 und 300 K berechnet. Fur beide Verbindungen nehmen diese Parameter mit der Temperatur zu. Insbesondere fur CuInTe2 ist diese Variation so stark, das sie bei der Anpassung der Beweglichkeitsdaten berucksichtigt werden mus.

[1]  J. Woolley,et al.  Temperature Variation of Optical Energy Gap and Deformation Potentials in AgInTe2 , 1990 .

[2]  S. Wasim,et al.  Sound Velocities and Elastic Moduli in CuInTe2 and CuInSe2 , 1990 .

[3]  G. Massé Concerning lattice defects and defect levels in CuInSe2 and the I‐III‐VI2 compounds , 1990 .

[4]  S. Wasim,et al.  Electrical properties of (CuIn)1−zMn2zTe2 alloys , 1990 .

[5]  Rincón,et al.  Acoustic deformation potentials in AIB , 1989, Physical Review B (Condensed Matter).

[6]  J. Woolley,et al.  Magnetic effects on optical energy gap values of (CuIn)1−z Mn2z Te2 alloys , 1989 .

[7]  C. Rincón,et al.  Temperature variation of energy gaps and deformation potentials in CuGa(SzSe1−z)2 semiconductor alloys , 1989 .

[8]  J. González,et al.  Optical absorption and phase transitions in CuInSe2 and CuInS2 single crystals at high pressure , 1989 .

[9]  S. Wasim,et al.  Electrical and Optical Properties of n- and p-Type CuInTe2 , 1988, December 16.

[10]  A. Ulrich,et al.  Lasers pumped by ion beams , 1988 .

[11]  C. Rincón On the deformation potentials in CuInSe2 ternary semiconductors , 1988 .

[12]  C. Rincón A model for the band gap shrinkage in the chalcopyrite semiconductor CuInSe2 , 1987 .

[13]  Rincón,et al.  Optical properties of copper indium diselenide near the fundamental absorption edge. , 1986, Physical review. B, Condensed matter.

[14]  S. Wasim Transport properties of CuInSe2 , 1986 .

[15]  H. Neumann Optical properties and electronic band structure of CuInSe2 , 1986 .

[16]  J. González,et al.  Temperature dependence of the bandgap in CuInSe2 , 1986 .

[17]  R. D. Tomlinson,et al.  Thermal expansion of CuInTe2 from 30 to 300 K , 1984 .

[18]  N. Ravindra,et al.  Temperature-Dependent Effective Masses in III-V Compound Semiconductors , 1983 .

[19]  G. Kühn,et al.  Low-Temperature Thermal Expansion in CuInSe2 , 1983, November 16.

[20]  J. González,et al.  Temperature Dependence of the Energy Gap in Cuinse2 , 1983 .

[21]  R. D. Tomlinson,et al.  Some Electrical Characteristics of Zn and Cd Doped CuInTe2 , 1982, May 16.

[22]  V. Riede,et al.  Hole Effective Masses in CuInSe2 , 1981 .

[23]  H. Sobotta,et al.  Infrared study of lattice and free carrier effects in p-type CuInTe2 single crystals , 1980 .

[24]  T. Irie,et al.  Electrical Properties of p- and n-Type CuInSe2 Single Crystals , 1979 .

[25]  H. Weinert,et al.  Infrared Faraday Effect in n-Type CuInSe2 , 1977 .

[26]  H. Kildal Band structure of CdGeAs2 near k-->=0 , 1974 .

[27]  L. M. Schiavone,et al.  Electronic Structure of AgInSe2and CuInSe2 , 1973 .

[28]  H. Y. Fan Temperature Dependence of the Energy Gap in Semiconductors , 1951 .